sharpenb's picture
83c6de3986244d23c3ce48f58e9720facdb98b409092cc6fc9d5522bfcb77cb2
1d9325c verified
|
raw
history blame
4.84 kB
metadata
license: apache-2.0
library_name: pruna-engine
thumbnail: >-
  https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg
metrics:
  - memory_disk
  - memory_inference
  - inference_latency
  - inference_throughput
  - inference_CO2_emissions
  - inference_energy_consumption

Twitter GitHub LinkedIn Discord

Simply make AI models cheaper, smaller, faster, and greener!

  • Give a thumbs up if you like this model!
  • Contact us and tell us which model to compress next here.
  • Request access to easily compress your own AI models here.
  • Read the documentations to know more here
  • Join Pruna AI community on Discord here to share feedback/suggestions or get help.

Results

image info

Important remarks:

  • The quality of the model output might slightly vary compared to the base model.
  • These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in config.json and are obtained after a hardware warmup. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...).
  • You can request premium access to more compression methods and tech support for your specific use-cases here.
  • Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.

Setup

You can run the smashed model with these steps:

  1. Check that you have linux, python 3.10, and cuda 12.1.0 requirements installed. For cuda, check with nvcc --version and install with conda install nvidia/label/cuda-12.1.0::cuda.
  2. Install the pruna-engine available here on Pypi. It might take up to 15 minutes to install.
    pip install pruna-engine[gpu]==0.6.0 --extra-index-url https://pypi.nvidia.com --extra-index-url https://pypi.ngc.nvidia.com --extra-index-url https://prunaai.pythonanywhere.com/
    
  3. Download the model files using one of these three options.
    • Option 1 - Use command line interface (CLI):
      mkdir nitrosocke-Arcane-Diffusion-turbo-tiny-green-smashed
      huggingface-cli download PrunaAI/nitrosocke-Arcane-Diffusion-turbo-tiny-green-smashed --local-dir nitrosocke-Arcane-Diffusion-turbo-tiny-green-smashed --local-dir-use-symlinks False
      
    • Option 2 - Use Python:
      import subprocess
      repo_name = "nitrosocke-Arcane-Diffusion-turbo-tiny-green-smashed"
      subprocess.run(["mkdir", repo_name])
      subprocess.run(["huggingface-cli", "download", 'PrunaAI/'+ repo_name, "--local-dir", repo_name, "--local-dir-use-symlinks", "False"])
      
    • Option 3 - Download them manually on the HuggingFace model page.
  4. Load & run the model.
    from pruna_engine.PrunaModel import PrunaModel
    
    model_path = "nitrosocke-Arcane-Diffusion-turbo-tiny-green-smashed/model"  # Specify the downloaded model path.
    smashed_model = PrunaModel.load_model(model_path)  # Load the model.
    smashed_model(prompt='Beautiful fruits in trees', height=512, width=512)[0][0]  # Run the model where x is the expected input of.
    

Configurations

The configuration info are in config.json.

Credits & License

We follow the same license as the original model. Please check the license of the original model nitrosocke/Arcane-Diffusion before using this model which provided the base model.

Want to compress other models?

  • Contact us and tell us which model to compress next here.
  • Request access to easily compress your own AI models here.