sharpenb commited on
Commit
c9cde48
1 Parent(s): 9ef6a17

Upload folder using huggingface_hub (#1)

Browse files

- fff44dfcafde861149d9bf64d649d8dd8d1a25f995a4c8a7552b966d6cefb04f (290940f35c1185bcefd671de6a360fcf6ec0e4c8)
- 39751589bd66c056919eb677eef672e361899ffd50028d020b6c69d547b34289 (e82902f30d46f6d687ec3164b9c95555859bd15b)
- 5453bc0bc51075419410b74ffc0d566e778975883ec8dc2cf71fc4538159a72d (bd9508b7f6525330d6be5bef354040c2c778fdf7)

Files changed (21) hide show
  1. .gitattributes +1 -0
  2. .locks/models--distributed--optimized-gpt2-1b/664ab0cd267a979f4248ecbb313a8279ec06e21b.lock +0 -0
  3. .locks/models--distributed--optimized-gpt2-1b/84bd38785e135d735130cb4633155169b1046946034dff6dd9275ef96649e85a.lock +0 -0
  4. .locks/models--distributed--optimized-gpt2-500m/03f1227b29a7a2051f79adb38cc603d8ab6a730b.lock +0 -0
  5. .locks/models--distributed--optimized-gpt2-500m/953c04829583cb1b5475c05e153bd1946e944cf6.lock +0 -0
  6. README.md +85 -0
  7. config.json +54 -0
  8. configuration_gpt_optimized.py +22 -0
  9. model.safetensors +3 -0
  10. models--distributed--optimized-gpt2-1b/.no_exist/fba79423a8549ee57e7ae92c54c57628e4a3b012/adapter_config.json +0 -0
  11. models--distributed--optimized-gpt2-1b/blobs/664ab0cd267a979f4248ecbb313a8279ec06e21b +37 -0
  12. models--distributed--optimized-gpt2-1b/blobs/84bd38785e135d735130cb4633155169b1046946034dff6dd9275ef96649e85a +3 -0
  13. models--distributed--optimized-gpt2-1b/refs/main +1 -0
  14. models--distributed--optimized-gpt2-1b/snapshots/fba79423a8549ee57e7ae92c54c57628e4a3b012/config.json +37 -0
  15. models--distributed--optimized-gpt2-1b/snapshots/fba79423a8549ee57e7ae92c54c57628e4a3b012/model.safetensors +3 -0
  16. models--distributed--optimized-gpt2-500m/blobs/03f1227b29a7a2051f79adb38cc603d8ab6a730b +22 -0
  17. models--distributed--optimized-gpt2-500m/blobs/953c04829583cb1b5475c05e153bd1946e944cf6 +200 -0
  18. models--distributed--optimized-gpt2-500m/refs/main +1 -0
  19. models--distributed--optimized-gpt2-500m/snapshots/9bd57ae4e2ba48cf4c123cdc9eab01af3845ba28/configuration_gpt_optimized.py +22 -0
  20. models--distributed--optimized-gpt2-500m/snapshots/9bd57ae4e2ba48cf4c123cdc9eab01af3845ba28/modeling_gpt_optimized.py +200 -0
  21. smash_config.json +37 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ models--distributed--optimized-gpt2-1b/blobs/84bd38785e135d735130cb4633155169b1046946034dff6dd9275ef96649e85a filter=lfs diff=lfs merge=lfs -text
.locks/models--distributed--optimized-gpt2-1b/664ab0cd267a979f4248ecbb313a8279ec06e21b.lock ADDED
File without changes
.locks/models--distributed--optimized-gpt2-1b/84bd38785e135d735130cb4633155169b1046946034dff6dd9275ef96649e85a.lock ADDED
File without changes
.locks/models--distributed--optimized-gpt2-500m/03f1227b29a7a2051f79adb38cc603d8ab6a730b.lock ADDED
File without changes
.locks/models--distributed--optimized-gpt2-500m/953c04829583cb1b5475c05e153bd1946e944cf6.lock ADDED
File without changes
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
3
+ base_model: distributed/optimized-gpt2-1b
4
+ metrics:
5
+ - memory_disk
6
+ - memory_inference
7
+ - inference_latency
8
+ - inference_throughput
9
+ - inference_CO2_emissions
10
+ - inference_energy_consumption
11
+ tags:
12
+ - pruna-ai
13
+ ---
14
+ <!-- header start -->
15
+ <!-- 200823 -->
16
+ <div style="width: auto; margin-left: auto; margin-right: auto">
17
+ <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
18
+ <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
19
+ </a>
20
+ </div>
21
+ <!-- header end -->
22
+
23
+ [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI)
24
+ [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI)
25
+ [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
26
+ [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx)
27
+
28
+ # Simply make AI models cheaper, smaller, faster, and greener!
29
+
30
+ - Give a thumbs up if you like this model!
31
+ - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
32
+ - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
33
+ - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
34
+ - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
35
+
36
+ ## Results
37
+
38
+ ![image info](./plots.png)
39
+
40
+ **Frequently Asked Questions**
41
+ - ***How does the compression work?*** The model is compressed with llm-int8.
42
+ - ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
43
+ - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
44
+ - ***What is the model format?*** We use safetensors.
45
+ - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
46
+ - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
47
+ - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
48
+ - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
49
+ - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
50
+
51
+ ## Setup
52
+
53
+ You can run the smashed model with these steps:
54
+
55
+ 0. Check requirements from the original repo distributed/optimized-gpt2-1b installed. In particular, check python, cuda, and transformers versions.
56
+ 1. Make sure that you have installed quantization related packages.
57
+ ```bash
58
+ pip install transformers accelerate bitsandbytes>0.37.0
59
+ ```
60
+ 2. Load & run the model.
61
+ ```python
62
+ from transformers import AutoModelForCausalLM, AutoTokenizer
63
+
64
+
65
+ model = AutoModelForCausalLM.from_pretrained("PrunaAI/distributed-optimized-gpt2-1b-bnb-smashed", trust_remote_code=True, device_map='auto')
66
+ tokenizer = AutoTokenizer.from_pretrained("distributed/optimized-gpt2-1b")
67
+
68
+ input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
69
+
70
+ outputs = model.generate(input_ids, max_new_tokens=216)
71
+ tokenizer.decode(outputs[0])
72
+ ```
73
+
74
+ ## Configurations
75
+
76
+ The configuration info are in `smash_config.json`.
77
+
78
+ ## Credits & License
79
+
80
+ The license of the smashed model follows the license of the original model. Please check the license of the original model distributed/optimized-gpt2-1b before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
81
+
82
+ ## Want to compress other models?
83
+
84
+ - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
85
+ - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/covalent/.cache/models/tmpk1t5rgu6v17wvlsb",
3
+ "activation_function": "gelu_new",
4
+ "architectures": [
5
+ "GPTOptim"
6
+ ],
7
+ "attn_pdrop": 0.1,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_gpt_optimized.GPTOptimConfig",
10
+ "AutoModelForCausalLM": "distributed/optimized-gpt2-500m--modeling_gpt_optimized.GPTOptim"
11
+ },
12
+ "block_size": 1024,
13
+ "bos_token_id": 50256,
14
+ "embd_pdrop": 0.1,
15
+ "eos_token_id": 50256,
16
+ "initializer_range": 0.02,
17
+ "layer_norm_epsilon": 1e-05,
18
+ "model_type": "gpt_optimized",
19
+ "n_embd": 1280,
20
+ "n_head": 32,
21
+ "n_inner": null,
22
+ "n_layer": 48,
23
+ "n_positions": 1024,
24
+ "quantization_config": {
25
+ "_load_in_4bit": false,
26
+ "_load_in_8bit": true,
27
+ "bnb_4bit_compute_dtype": "bfloat16",
28
+ "bnb_4bit_quant_storage": "uint8",
29
+ "bnb_4bit_quant_type": "fp4",
30
+ "bnb_4bit_use_double_quant": false,
31
+ "llm_int8_enable_fp32_cpu_offload": false,
32
+ "llm_int8_has_fp16_weight": false,
33
+ "llm_int8_skip_modules": [
34
+ "lm_head"
35
+ ],
36
+ "llm_int8_threshold": 6.0,
37
+ "load_in_4bit": false,
38
+ "load_in_8bit": true,
39
+ "quant_method": "bitsandbytes"
40
+ },
41
+ "reorder_and_upcast_attn": false,
42
+ "resid_pdrop": 0.1,
43
+ "scale_attn_by_inverse_layer_idx": false,
44
+ "scale_attn_weights": true,
45
+ "summary_activation": null,
46
+ "summary_first_dropout": 0.1,
47
+ "summary_proj_to_labels": true,
48
+ "summary_type": "cls_index",
49
+ "summary_use_proj": true,
50
+ "torch_dtype": "float16",
51
+ "transformers_version": "4.46.1",
52
+ "use_cache": true,
53
+ "vocab_size": 50257
54
+ }
configuration_gpt_optimized.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig, GPT2Config
2
+ from typing import List
3
+
4
+
5
+ class GPTOptimConfig(GPT2Config):
6
+ model_type = "gpt_optimized"
7
+
8
+ def __init__(
9
+ self,
10
+ block_size: int = 1024, # max sequence length
11
+ vocab_size: int = 50257, # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
12
+ n_layer: int = 16, # number of layers
13
+ n_head: int = 16, # number of heads
14
+ n_embd: int = 1024, # embedding dimension
15
+ **kwargs,
16
+ ):
17
+ super().__init__(**kwargs)
18
+ self.block_size = block_size
19
+ self.vocab_size = vocab_size
20
+ self.n_layer = n_layer
21
+ self.n_head = n_head
22
+ self.n_embd = n_embd
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a9316cb534bf66e7e13d432916c9d943119734ba5ed1df39a00f821c9fa3380
3
+ size 1207575528
models--distributed--optimized-gpt2-1b/.no_exist/fba79423a8549ee57e7ae92c54c57628e4a3b012/adapter_config.json ADDED
File without changes
models--distributed--optimized-gpt2-1b/blobs/664ab0cd267a979f4248ecbb313a8279ec06e21b ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distributed/optimized-gpt2-1b",
3
+ "activation_function": "gelu_new",
4
+ "architectures": [
5
+ "GPTOptim"
6
+ ],
7
+ "attn_pdrop": 0.1,
8
+ "auto_map": {
9
+ "AutoConfig": "distributed/optimized-gpt2-500m--configuration_gpt_optimized.GPTOptimConfig",
10
+ "AutoModelForCausalLM": "distributed/optimized-gpt2-500m--modeling_gpt_optimized.GPTOptim"
11
+ },
12
+ "block_size": 1024,
13
+ "bos_token_id": 50256,
14
+ "embd_pdrop": 0.1,
15
+ "eos_token_id": 50256,
16
+ "initializer_range": 0.02,
17
+ "layer_norm_epsilon": 1e-05,
18
+ "model_type": "gpt_optimized",
19
+ "n_embd": 1280,
20
+ "n_head": 32,
21
+ "n_inner": null,
22
+ "n_layer": 48,
23
+ "n_positions": 1024,
24
+ "reorder_and_upcast_attn": false,
25
+ "resid_pdrop": 0.1,
26
+ "scale_attn_by_inverse_layer_idx": false,
27
+ "scale_attn_weights": true,
28
+ "summary_activation": null,
29
+ "summary_first_dropout": 0.1,
30
+ "summary_proj_to_labels": true,
31
+ "summary_type": "cls_index",
32
+ "summary_use_proj": true,
33
+ "torch_dtype": "float32",
34
+ "transformers_version": "4.39.3",
35
+ "use_cache": true,
36
+ "vocab_size": 50257
37
+ }
models--distributed--optimized-gpt2-1b/blobs/84bd38785e135d735130cb4633155169b1046946034dff6dd9275ef96649e85a ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84bd38785e135d735130cb4633155169b1046946034dff6dd9275ef96649e85a
3
+ size 4040701744
models--distributed--optimized-gpt2-1b/refs/main ADDED
@@ -0,0 +1 @@
 
 
1
+ fba79423a8549ee57e7ae92c54c57628e4a3b012
models--distributed--optimized-gpt2-1b/snapshots/fba79423a8549ee57e7ae92c54c57628e4a3b012/config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distributed/optimized-gpt2-1b",
3
+ "activation_function": "gelu_new",
4
+ "architectures": [
5
+ "GPTOptim"
6
+ ],
7
+ "attn_pdrop": 0.1,
8
+ "auto_map": {
9
+ "AutoConfig": "distributed/optimized-gpt2-500m--configuration_gpt_optimized.GPTOptimConfig",
10
+ "AutoModelForCausalLM": "distributed/optimized-gpt2-500m--modeling_gpt_optimized.GPTOptim"
11
+ },
12
+ "block_size": 1024,
13
+ "bos_token_id": 50256,
14
+ "embd_pdrop": 0.1,
15
+ "eos_token_id": 50256,
16
+ "initializer_range": 0.02,
17
+ "layer_norm_epsilon": 1e-05,
18
+ "model_type": "gpt_optimized",
19
+ "n_embd": 1280,
20
+ "n_head": 32,
21
+ "n_inner": null,
22
+ "n_layer": 48,
23
+ "n_positions": 1024,
24
+ "reorder_and_upcast_attn": false,
25
+ "resid_pdrop": 0.1,
26
+ "scale_attn_by_inverse_layer_idx": false,
27
+ "scale_attn_weights": true,
28
+ "summary_activation": null,
29
+ "summary_first_dropout": 0.1,
30
+ "summary_proj_to_labels": true,
31
+ "summary_type": "cls_index",
32
+ "summary_use_proj": true,
33
+ "torch_dtype": "float32",
34
+ "transformers_version": "4.39.3",
35
+ "use_cache": true,
36
+ "vocab_size": 50257
37
+ }
models--distributed--optimized-gpt2-1b/snapshots/fba79423a8549ee57e7ae92c54c57628e4a3b012/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84bd38785e135d735130cb4633155169b1046946034dff6dd9275ef96649e85a
3
+ size 4040701744
models--distributed--optimized-gpt2-500m/blobs/03f1227b29a7a2051f79adb38cc603d8ab6a730b ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig, GPT2Config
2
+ from typing import List
3
+
4
+
5
+ class GPTOptimConfig(GPT2Config):
6
+ model_type = "gpt_optimized"
7
+
8
+ def __init__(
9
+ self,
10
+ block_size: int = 1024, # max sequence length
11
+ vocab_size: int = 50257, # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
12
+ n_layer: int = 16, # number of layers
13
+ n_head: int = 16, # number of heads
14
+ n_embd: int = 1024, # embedding dimension
15
+ **kwargs,
16
+ ):
17
+ super().__init__(**kwargs)
18
+ self.block_size = block_size
19
+ self.vocab_size = vocab_size
20
+ self.n_layer = n_layer
21
+ self.n_head = n_head
22
+ self.n_embd = n_embd
models--distributed--optimized-gpt2-500m/blobs/953c04829583cb1b5475c05e153bd1946e944cf6 ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torch.nn import CrossEntropyLoss, functional as F
4
+ from transformers import PreTrainedModel, GPT2PreTrainedModel
5
+ from .configuration_gpt_optimized import GPTOptimConfig
6
+ from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions, BaseModelOutputWithPastAndCrossAttentions
7
+ from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
8
+ from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask_for_sdpa
9
+ from typing import Optional, Tuple, Union
10
+
11
+ _CHECKPOINT_FOR_DOC = "openai-community/gpt2"
12
+ _CONFIG_FOR_DOC = "GPT2Config"
13
+
14
+ GPT2_INPUTS_DOCSTRING = r"""
15
+ Args:
16
+ input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
17
+ `input_ids_length` = `sequence_length` if `past_key_values` is `None` else
18
+ `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
19
+ sequence tokens in the vocabulary.
20
+
21
+ If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
22
+ `input_ids`.
23
+
24
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
25
+ [`PreTrainedTokenizer.__call__`] for details.
26
+
27
+ [What are input IDs?](../glossary#input-ids)
28
+ past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
29
+ Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
30
+ `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
31
+ their past given to this model should not be passed as `input_ids` as they have already been computed.
32
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
33
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
34
+
35
+ - 1 for tokens that are **not masked**,
36
+ - 0 for tokens that are **masked**.
37
+
38
+ If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
39
+ `past_key_values`. In other words, the `attention_mask` always has to have the length:
40
+ `len(past_key_values) + len(input_ids)`
41
+
42
+ [What are attention masks?](../glossary#attention-mask)
43
+ token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
44
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
45
+ 1]`:
46
+
47
+ - 0 corresponds to a *sentence A* token,
48
+ - 1 corresponds to a *sentence B* token.
49
+
50
+ [What are token type IDs?](../glossary#token-type-ids)
51
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
52
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
53
+ config.max_position_embeddings - 1]`.
54
+
55
+ [What are position IDs?](../glossary#position-ids)
56
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
57
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
58
+
59
+ - 1 indicates the head is **not masked**,
60
+ - 0 indicates the head is **masked**.
61
+
62
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
63
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
64
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
65
+ model's internal embedding lookup matrix.
66
+
67
+ If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
68
+ `past_key_values`).
69
+ use_cache (`bool`, *optional*):
70
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
71
+ `past_key_values`).
72
+ output_attentions (`bool`, *optional*):
73
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
74
+ tensors for more detail.
75
+ output_hidden_states (`bool`, *optional*):
76
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
77
+ more detail.
78
+ return_dict (`bool`, *optional*):
79
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
80
+ """
81
+
82
+ class CausalSelfAttention(nn.Module):
83
+
84
+ def __init__(self, config):
85
+ super().__init__()
86
+ assert config.n_embd % config.n_head == 0
87
+ # key, query, value projections for all heads, but in a batch
88
+ self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
89
+ # output projection
90
+ self.c_proj = nn.Linear(config.n_embd, config.n_embd)
91
+ self.c_proj.NANOGPT_SCALE_INIT = 1
92
+ # regularization
93
+ self.n_head = config.n_head
94
+ self.n_embd = config.n_embd
95
+
96
+ def forward(self, x):
97
+ B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
98
+ # calculate query, key, values for all heads in batch and move head forward to be the batch dim
99
+ # nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
100
+ # e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
101
+ qkv = self.c_attn(x)
102
+ q, k, v = qkv.split(self.n_embd, dim=2)
103
+ k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
104
+ q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
105
+ v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
106
+ y = F.scaled_dot_product_attention(q, k, v, is_causal=True) # flash attention
107
+ y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
108
+ # output projection
109
+ y = self.c_proj(y)
110
+ return y
111
+
112
+ class MLP(nn.Module):
113
+
114
+ def __init__(self, config):
115
+ super().__init__()
116
+ self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
117
+ self.gelu = nn.GELU(approximate='tanh')
118
+ self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
119
+ self.c_proj.NANOGPT_SCALE_INIT = 1
120
+
121
+ def forward(self, x):
122
+ x = self.c_fc(x)
123
+ x = self.gelu(x)
124
+ x = self.c_proj(x)
125
+ return x
126
+
127
+ class Block(nn.Module):
128
+
129
+ def __init__(self, config):
130
+ super().__init__()
131
+ self.ln_1 = nn.LayerNorm(config.n_embd)
132
+ self.attn = CausalSelfAttention(config)
133
+ self.ln_2 = nn.LayerNorm(config.n_embd)
134
+ self.mlp = MLP(config)
135
+
136
+ def forward(self, x):
137
+ x = x + self.attn(self.ln_1(x))
138
+ x = x + self.mlp(self.ln_2(x))
139
+ return x
140
+
141
+ class GPT(nn.Module):
142
+
143
+ def __init__(self, config):
144
+ super().__init__()
145
+ self.config = config
146
+
147
+ self.transformer = nn.ModuleDict(dict(
148
+ wte = nn.Embedding(config.vocab_size, config.n_embd),
149
+ wpe = nn.Embedding(config.block_size, config.n_embd),
150
+ h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
151
+ ln_f = nn.LayerNorm(config.n_embd),
152
+ ))
153
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
154
+
155
+ # weight sharing scheme
156
+ self.transformer.wte.weight = self.lm_head.weight
157
+
158
+ # init params
159
+ self.apply(self._init_weights)
160
+
161
+ def _init_weights(self, module):
162
+ if isinstance(module, nn.Linear):
163
+ std = 0.02
164
+ if hasattr(module, 'NANOGPT_SCALE_INIT'):
165
+ std *= (2 * self.config.n_layer) ** -0.5
166
+ torch.nn.init.normal_(module.weight, mean=0.0, std=std)
167
+ if module.bias is not None:
168
+ torch.nn.init.zeros_(module.bias)
169
+ elif isinstance(module, nn.Embedding):
170
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
171
+
172
+ class GPTOptim(GPT2PreTrainedModel):
173
+ config_class = GPTOptimConfig
174
+
175
+ def __init__(self, config):
176
+ super().__init__(config)
177
+ self.model = GPT(
178
+ config
179
+ )
180
+ self.config = config
181
+
182
+ def forward(self, input_ids, labels=None):
183
+ # input_ids is of shape (B, T)
184
+ B, T = input_ids.size()
185
+ assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
186
+ # forward the token and posisition embeddings
187
+ pos = torch.arange(0, T, dtype=torch.long, device=input_ids.device) # shape (T)
188
+ pos_emb = self.model.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
189
+ tok_emb = self.model.transformer.wte(input_ids) # token embeddings of shape (B, T, n_embd)
190
+ x = tok_emb + pos_emb
191
+ # forward the blocks of the transformer
192
+ for block in self.model.transformer.h:
193
+ x = block(x)
194
+ # forward the final layernorm and the classifier
195
+ x = self.model.transformer.ln_f(x)
196
+ logits = self.model.lm_head(x) # (B, T, vocab_size)
197
+ loss = None
198
+ if labels is not None:
199
+ loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1), ignore_index=self.config.eos_token_id)
200
+ return logits, loss
models--distributed--optimized-gpt2-500m/refs/main ADDED
@@ -0,0 +1 @@
 
 
1
+ 9bd57ae4e2ba48cf4c123cdc9eab01af3845ba28
models--distributed--optimized-gpt2-500m/snapshots/9bd57ae4e2ba48cf4c123cdc9eab01af3845ba28/configuration_gpt_optimized.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig, GPT2Config
2
+ from typing import List
3
+
4
+
5
+ class GPTOptimConfig(GPT2Config):
6
+ model_type = "gpt_optimized"
7
+
8
+ def __init__(
9
+ self,
10
+ block_size: int = 1024, # max sequence length
11
+ vocab_size: int = 50257, # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
12
+ n_layer: int = 16, # number of layers
13
+ n_head: int = 16, # number of heads
14
+ n_embd: int = 1024, # embedding dimension
15
+ **kwargs,
16
+ ):
17
+ super().__init__(**kwargs)
18
+ self.block_size = block_size
19
+ self.vocab_size = vocab_size
20
+ self.n_layer = n_layer
21
+ self.n_head = n_head
22
+ self.n_embd = n_embd
models--distributed--optimized-gpt2-500m/snapshots/9bd57ae4e2ba48cf4c123cdc9eab01af3845ba28/modeling_gpt_optimized.py ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torch.nn import CrossEntropyLoss, functional as F
4
+ from transformers import PreTrainedModel, GPT2PreTrainedModel
5
+ from .configuration_gpt_optimized import GPTOptimConfig
6
+ from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions, BaseModelOutputWithPastAndCrossAttentions
7
+ from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
8
+ from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask_for_sdpa
9
+ from typing import Optional, Tuple, Union
10
+
11
+ _CHECKPOINT_FOR_DOC = "openai-community/gpt2"
12
+ _CONFIG_FOR_DOC = "GPT2Config"
13
+
14
+ GPT2_INPUTS_DOCSTRING = r"""
15
+ Args:
16
+ input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
17
+ `input_ids_length` = `sequence_length` if `past_key_values` is `None` else
18
+ `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
19
+ sequence tokens in the vocabulary.
20
+
21
+ If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
22
+ `input_ids`.
23
+
24
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
25
+ [`PreTrainedTokenizer.__call__`] for details.
26
+
27
+ [What are input IDs?](../glossary#input-ids)
28
+ past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
29
+ Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
30
+ `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
31
+ their past given to this model should not be passed as `input_ids` as they have already been computed.
32
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
33
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
34
+
35
+ - 1 for tokens that are **not masked**,
36
+ - 0 for tokens that are **masked**.
37
+
38
+ If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
39
+ `past_key_values`. In other words, the `attention_mask` always has to have the length:
40
+ `len(past_key_values) + len(input_ids)`
41
+
42
+ [What are attention masks?](../glossary#attention-mask)
43
+ token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
44
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
45
+ 1]`:
46
+
47
+ - 0 corresponds to a *sentence A* token,
48
+ - 1 corresponds to a *sentence B* token.
49
+
50
+ [What are token type IDs?](../glossary#token-type-ids)
51
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
52
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
53
+ config.max_position_embeddings - 1]`.
54
+
55
+ [What are position IDs?](../glossary#position-ids)
56
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
57
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
58
+
59
+ - 1 indicates the head is **not masked**,
60
+ - 0 indicates the head is **masked**.
61
+
62
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
63
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
64
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
65
+ model's internal embedding lookup matrix.
66
+
67
+ If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
68
+ `past_key_values`).
69
+ use_cache (`bool`, *optional*):
70
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
71
+ `past_key_values`).
72
+ output_attentions (`bool`, *optional*):
73
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
74
+ tensors for more detail.
75
+ output_hidden_states (`bool`, *optional*):
76
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
77
+ more detail.
78
+ return_dict (`bool`, *optional*):
79
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
80
+ """
81
+
82
+ class CausalSelfAttention(nn.Module):
83
+
84
+ def __init__(self, config):
85
+ super().__init__()
86
+ assert config.n_embd % config.n_head == 0
87
+ # key, query, value projections for all heads, but in a batch
88
+ self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
89
+ # output projection
90
+ self.c_proj = nn.Linear(config.n_embd, config.n_embd)
91
+ self.c_proj.NANOGPT_SCALE_INIT = 1
92
+ # regularization
93
+ self.n_head = config.n_head
94
+ self.n_embd = config.n_embd
95
+
96
+ def forward(self, x):
97
+ B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
98
+ # calculate query, key, values for all heads in batch and move head forward to be the batch dim
99
+ # nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
100
+ # e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
101
+ qkv = self.c_attn(x)
102
+ q, k, v = qkv.split(self.n_embd, dim=2)
103
+ k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
104
+ q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
105
+ v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
106
+ y = F.scaled_dot_product_attention(q, k, v, is_causal=True) # flash attention
107
+ y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
108
+ # output projection
109
+ y = self.c_proj(y)
110
+ return y
111
+
112
+ class MLP(nn.Module):
113
+
114
+ def __init__(self, config):
115
+ super().__init__()
116
+ self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
117
+ self.gelu = nn.GELU(approximate='tanh')
118
+ self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
119
+ self.c_proj.NANOGPT_SCALE_INIT = 1
120
+
121
+ def forward(self, x):
122
+ x = self.c_fc(x)
123
+ x = self.gelu(x)
124
+ x = self.c_proj(x)
125
+ return x
126
+
127
+ class Block(nn.Module):
128
+
129
+ def __init__(self, config):
130
+ super().__init__()
131
+ self.ln_1 = nn.LayerNorm(config.n_embd)
132
+ self.attn = CausalSelfAttention(config)
133
+ self.ln_2 = nn.LayerNorm(config.n_embd)
134
+ self.mlp = MLP(config)
135
+
136
+ def forward(self, x):
137
+ x = x + self.attn(self.ln_1(x))
138
+ x = x + self.mlp(self.ln_2(x))
139
+ return x
140
+
141
+ class GPT(nn.Module):
142
+
143
+ def __init__(self, config):
144
+ super().__init__()
145
+ self.config = config
146
+
147
+ self.transformer = nn.ModuleDict(dict(
148
+ wte = nn.Embedding(config.vocab_size, config.n_embd),
149
+ wpe = nn.Embedding(config.block_size, config.n_embd),
150
+ h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
151
+ ln_f = nn.LayerNorm(config.n_embd),
152
+ ))
153
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
154
+
155
+ # weight sharing scheme
156
+ self.transformer.wte.weight = self.lm_head.weight
157
+
158
+ # init params
159
+ self.apply(self._init_weights)
160
+
161
+ def _init_weights(self, module):
162
+ if isinstance(module, nn.Linear):
163
+ std = 0.02
164
+ if hasattr(module, 'NANOGPT_SCALE_INIT'):
165
+ std *= (2 * self.config.n_layer) ** -0.5
166
+ torch.nn.init.normal_(module.weight, mean=0.0, std=std)
167
+ if module.bias is not None:
168
+ torch.nn.init.zeros_(module.bias)
169
+ elif isinstance(module, nn.Embedding):
170
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
171
+
172
+ class GPTOptim(GPT2PreTrainedModel):
173
+ config_class = GPTOptimConfig
174
+
175
+ def __init__(self, config):
176
+ super().__init__(config)
177
+ self.model = GPT(
178
+ config
179
+ )
180
+ self.config = config
181
+
182
+ def forward(self, input_ids, labels=None):
183
+ # input_ids is of shape (B, T)
184
+ B, T = input_ids.size()
185
+ assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
186
+ # forward the token and posisition embeddings
187
+ pos = torch.arange(0, T, dtype=torch.long, device=input_ids.device) # shape (T)
188
+ pos_emb = self.model.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
189
+ tok_emb = self.model.transformer.wte(input_ids) # token embeddings of shape (B, T, n_embd)
190
+ x = tok_emb + pos_emb
191
+ # forward the blocks of the transformer
192
+ for block in self.model.transformer.h:
193
+ x = block(x)
194
+ # forward the final layernorm and the classifier
195
+ x = self.model.transformer.ln_f(x)
196
+ logits = self.model.lm_head(x) # (B, T, vocab_size)
197
+ loss = None
198
+ if labels is not None:
199
+ loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1), ignore_index=self.config.eos_token_id)
200
+ return logits, loss
smash_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "comp_cgenerate_active": false,
3
+ "comp_ctranslate_active": false,
4
+ "comp_cwhisper_active": false,
5
+ "comp_diffusers2_active": false,
6
+ "comp_ifw_active": false,
7
+ "comp_onediff_active": false,
8
+ "comp_step_caching_active": false,
9
+ "comp_torch_compile_active": false,
10
+ "comp_ws2t_active": false,
11
+ "comp_x-fast_active": false,
12
+ "prune_torch-structured_active": false,
13
+ "quant_aqlm_active": false,
14
+ "quant_awq_active": false,
15
+ "quant_gptq_active": false,
16
+ "quant_half_active": false,
17
+ "quant_hqq_active": false,
18
+ "quant_llm-int8_active": true,
19
+ "quant_quanto_active": false,
20
+ "quant_torch_dynamic_active": false,
21
+ "quant_torch_static_active": false,
22
+ "quant_llm-int8_compute_dtype": "bfloat16",
23
+ "quant_llm-int8_double_quant": false,
24
+ "quant_llm-int8_enable_fp32_cpu_offload": false,
25
+ "quant_llm-int8_has_fp16_weight": false,
26
+ "quant_llm-int8_quant_type": "fp4",
27
+ "quant_llm-int8_threshold": 6.0,
28
+ "quant_llm-int8_weight_bits": 8,
29
+ "max_batch_size": 1,
30
+ "device": "cuda",
31
+ "cache_dir": "/covalent/.cache/models/tmpk1t5rgu6",
32
+ "task": "",
33
+ "save_load_fn": "bitsandbytes",
34
+ "save_load_fn_args": {
35
+ "weight_quantization_bits": "param.dtype"
36
+ }
37
+ }