|
--- |
|
license: apache-2.0 |
|
language: |
|
- fr |
|
library_name: transformers |
|
tags: |
|
- NMT |
|
- orféo |
|
- pytorch |
|
- pictograms |
|
- translation |
|
metrics: |
|
- bleu |
|
inference: false |
|
--- |
|
|
|
# t2p-nmt-orfeo |
|
|
|
*t2p-nmt-orfeo* is a text-to-pictograms translation model built by training from scratch the [NMT](https://github.com/facebookresearch/fairseq/blob/main/examples/translation/README.md) model on a dataset of pairs of transcriptions / pictogram token sequence (each token is linked to a pictogram image from [ARASAAC](https://arasaac.org/)). |
|
The model is used only for **inference**. |
|
|
|
## Training details |
|
|
|
The model was trained with [Fairseq](https://github.com/facebookresearch/fairseq/blob/main/examples/translation/README.md). |
|
|
|
### Datasets |
|
|
|
The [Propicto-orféo dataset](https://www.ortolang.fr/market/corpora/propicto) is used, which was created from the CEFC-Orféo corpus. |
|
This dataset was presented in the research paper titled ["A Multimodal French Corpus of Aligned Speech, Text, and Pictogram Sequences for Speech-to-Pictogram Machine Translation](https://aclanthology.org/2024.lrec-main.76/)" at LREC-Coling 2024. |
|
The dataset was split into training, validation, and test sets. |
|
| **Split** | **Number of utterances** | |
|
|:-----------:|:-----------------------:| |
|
| train | 231,374 | |
|
| valid | 28,796 | |
|
| test | 29,009 | |
|
|
|
### Parameters |
|
|
|
This is the arguments in the training pipeline : |
|
|
|
```bash |
|
fairseq-train \ |
|
data-bin/orfeo.tokenized.fr-frp \ |
|
--arch transformer_iwslt_de_en --share-decoder-input-output-embed \ |
|
--optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \ |
|
--lr 5e-4 --lr-scheduler inverse_sqrt --warmup-updates 4000 \ |
|
--dropout 0.3 --weight-decay 0.0001 \ |
|
--save-dir exp_orfeo/checkpoints/nmt_fr_frp_orfeo \ |
|
--criterion label_smoothed_cross_entropy --label-smoothing 0.1 \ |
|
--max-tokens 4096 \ |
|
--eval-bleu \ |
|
--eval-bleu-args '{"beam": 5, "max_len_a": 1.2, "max_len_b": 10}' \ |
|
--eval-bleu-detok moses \ |
|
--eval-bleu-remove-bpe \ |
|
--eval-bleu-print-samples \ |
|
--best-checkpoint-metric bleu --maximize-best-checkpoint-metric \ |
|
--max-epoch 40 \ |
|
--keep-best-checkpoints 5 \ |
|
--keep-last-epochs 5 |
|
``` |
|
|
|
### Evaluation |
|
|
|
The model was evaluated with BLEU, where we compared the reference pictogram translation with the model hypothesis. |
|
|
|
```bash |
|
fairseq-generate exp_orfeo/data-bin/orfeo.tokenized.fr-frp \ |
|
--path exp_orfeo/checkpoints/nmt_fr_frp_orfeo/checkpoint.best_bleu_87.2803.pt \ |
|
--batch-size 128 --beam 5 --remove-bpe > gen_orfeo.out |
|
``` |
|
The output file prints the following information : |
|
```txt |
|
S-16709 peut-être vous pouvez vous exprimer |
|
T-16709 vous pouvoir exprimer |
|
H-16709 -0.0769597738981247 vous pouvoir exprimer |
|
D-16709 -0.0769597738981247 vous pouvoir exprimer |
|
P-16709 -0.0936 -0.0924 -0.0065 -0.1154 |
|
Generate test with beam=5: BLEU4 = 87.43, 95.2/89.8/85.0/80.4 (BP=1.000, ratio=1.006, syslen=250949, reflen=249520) |
|
``` |
|
|
|
### Results |
|
|
|
Comparison to other translation models : |
|
| **Model** | **validation** | **test** | |
|
|:-----------:|:-----------------------:|:-----------------------:| |
|
| **t2p-t5-large-orféo** | 85.2 | 85.8 | |
|
| t2p-nmt-orféo | **87.2** | **87.4** | |
|
| t2p-mbart-large-cc25-orfeo | 75.2 | 75.6 | |
|
| t2p-nllb-200-distilled-600M-orfeo | 86.3 | 86.9 | |
|
|
|
### Environmental Impact |
|
|
|
Training was performed using a single Nvidia V100 GPU with 32 GB of memory which took around 2 hours in total. |
|
|
|
## Using t2p-nmt-orfeo model |
|
|
|
The scripts to use the *t2p-nmt-orfeo* model are located in the [speech-to-pictograms GitHub repository](https://github.com/macairececile/speech-to-pictograms). |
|
|
|
## Information |
|
|
|
- **Language(s):** French |
|
- **License:** Apache-2.0 |
|
- **Developed by:** Cécile Macaire |
|
- **Funded by** |
|
- GENCI-IDRIS (Grant 2023-AD011013625R1) |
|
- PROPICTO ANR-20-CE93-0005 |
|
- **Authors** |
|
- Cécile Macaire |
|
- Chloé Dion |
|
- Emmanuelle Esperança-Rodier |
|
- Benjamin Lecouteux |
|
- Didier Schwab |
|
|
|
|
|
## Citation |
|
|
|
If you use this model for your own research work, please cite as follows: |
|
|
|
```bibtex |
|
@inproceedings{macaire_jeptaln2024, |
|
title = {{Approches cascade et de bout-en-bout pour la traduction automatique de la parole en pictogrammes}}, |
|
author = {Macaire, C{\'e}cile and Dion, Chlo{\'e} and Schwab, Didier and Lecouteux, Benjamin and Esperan{\c c}a-Rodier, Emmanuelle}, |
|
url = {https://inria.hal.science/hal-04623007}, |
|
booktitle = {{35{\`e}mes Journ{\'e}es d'{\'E}tudes sur la Parole (JEP 2024) 31{\`e}me Conf{\'e}rence sur le Traitement Automatique des Langues Naturelles (TALN 2024) 26{\`e}me Rencontre des {\'E}tudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RECITAL 2024)}}, |
|
address = {Toulouse, France}, |
|
publisher = {{ATALA \& AFPC}}, |
|
volume = {1 : articles longs et prises de position}, |
|
pages = {22-35}, |
|
year = {2024} |
|
} |
|
``` |
|
|