Priyabrata018's picture
ner_model
e4437f0
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - fin
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilbert-base-uncased-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: fin
          type: fin
          config: fin
          split: validation
          args: fin
        metrics:
          - name: Precision
            type: precision
            value: 0.9825072886297376
          - name: Recall
            type: recall
            value: 0.8776041666666666
          - name: F1
            type: f1
            value: 0.9270976616231086
          - name: Accuracy
            type: accuracy
            value: 0.9851503078594712

distilbert-base-uncased-finetuned-ner

This model is a fine-tuned version of distilbert-base-uncased on the fin dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1142
  • Precision: 0.9825
  • Recall: 0.8776
  • F1: 0.9271
  • Accuracy: 0.9852

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 64 0.1589 0.9760 0.7422 0.8432 0.9752
No log 2.0 128 0.1221 0.9731 0.7526 0.8488 0.9765
No log 3.0 192 0.1142 0.9825 0.8776 0.9271 0.9852

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1