bert-finetuned-ner / README.md
Prikshit7766's picture
Update README.md
15efe28 verified
|
raw
history blame
2.78 kB
---
datasets:
- eriktks/conll2003
language:
- en
metrics:
- accuracy
- precision
- recall
- f1
base_model:
- google-bert/bert-base-cased
pipeline_tag: token-classification
library_name: transformers
---
## Dataset Used
This model was trained on the [CoNLL 2003 dataset](https://huggingface.co/datasets/eriktks/conll2003) for Named Entity Recognition (NER) tasks.
The dataset includes the following labels:
- `O`, `B-PER`, `I-PER`, `B-ORG`, `I-ORG`, `B-LOC`, `I-LOC`, `B-MISC`, `I-MISC`
For detailed descriptions of these labels, please refer to the [dataset card](https://huggingface.co/datasets/eriktks/conll2003).
## Model Training Details
### Training Arguments
- **Model Architecture**: `bert-base-cased` for token classification
- **Learning Rate**: `2e-5`
- **Number of Epochs**: `20`
- **Weight Decay**: `0.01`
- **Evaluation Strategy**: `epoch`
- **Save Strategy**: `epoch`
*Additional default parameters from the Hugging Face Transformers library were used.*
## Evaluation Results
### Validation Set Performance
- **Overall Metrics**:
- Precision: 94.44%
- Recall: 95.74%
- F1 Score: 95.09%
- Accuracy: 98.73%
#### Per-Label Performance
| Entity Type | Precision | Recall | F1 Score |
|------------|-----------|--------|----------|
| LOC | 97.27% | 97.11% | 97.19% |
| MISC | 87.46% | 91.54% | 89.45% |
| ORG | 93.37% | 93.44% | 93.40% |
| PER | 96.02% | 98.15% | 97.07% |
### Test Set Performance
- **Overall Metrics**:
- Precision: 89.90%
- Recall: 91.91%
- F1 Score: 90.89%
- Accuracy: 97.27%
#### Per-Label Performance
| Entity Type | Precision | Recall | F1 Score |
|------------|-----------|--------|----------|
| LOC | 92.87% | 92.87% | 92.87% |
| MISC | 75.55% | 82.76% | 78.99% |
| ORG | 88.32% | 90.61% | 89.45% |
| PER | 95.28% | 96.23% | 95.75% |
## How to Use the Model
You can load the model directly from the Hugging Face Model Hub:
```python
from transformers import pipeline
# Replace with your specific model checkpoint
model_checkpoint = "Prikshit7766/bert-finetuned-ner"
token_classifier = pipeline(
"token-classification",
model=model_checkpoint,
aggregation_strategy="simple"
)
# Example usage
result = token_classifier("My name is Sylvain and I work at Hugging Face in Brooklyn.")
print(result)
```
### Example Output
```python
[
{
"entity_group":"PER",
"score":0.9999881,
"word":"Sylvain",
"start":11,
"end":18
},
{
"entity_group":"ORG",
"score":0.99961376,
"word":"Hugging Face",
"start":33,
"end":45
},
{
"entity_group":"LOC",
"score":0.99989843,
"word":"Brooklyn",
"start":49,
"end":57
}
]
```