yixinsong commited on
Commit
0d452c5
·
1 Parent(s): 2641c8f

update weight

Browse files
.gitattributes CHANGED
@@ -35,3 +35,27 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  model-00001-of-00002.safetensors filter=lfs diff=lfs merge=lfs -text
37
  model-00002-of-00002.safetensors filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  model-00001-of-00002.safetensors filter=lfs diff=lfs merge=lfs -text
37
  model-00002-of-00002.safetensors filter=lfs diff=lfs merge=lfs -text
38
+ vocab.json filter=lfs diff=lfs merge=lfs -text
39
+ merges.txt filter=lfs diff=lfs merge=lfs -text
40
+ model.safetensors.index.json filter=lfs diff=lfs merge=lfs -text
41
+ rng_state_5.pth filter=lfs diff=lfs merge=lfs -text
42
+ rng_state_6.pth filter=lfs diff=lfs merge=lfs -text
43
+ scheduler.pt filter=lfs diff=lfs merge=lfs -text
44
+ special_tokens_map.json filter=lfs diff=lfs merge=lfs -text
45
+ training_args.bin filter=lfs diff=lfs merge=lfs -text
46
+ added_tokens.json filter=lfs diff=lfs merge=lfs -text
47
+ generation_config.json filter=lfs diff=lfs merge=lfs -text
48
+ rng_state_1.pth filter=lfs diff=lfs merge=lfs -text
49
+ rng_state_3.pth filter=lfs diff=lfs merge=lfs -text
50
+ rng_state_7.pth filter=lfs diff=lfs merge=lfs -text
51
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
52
+ config.json filter=lfs diff=lfs merge=lfs -text
53
+ rng_state_0.pth filter=lfs diff=lfs merge=lfs -text
54
+ rng_state_4.pth filter=lfs diff=lfs merge=lfs -text
55
+ tokenizer_config.json filter=lfs diff=lfs merge=lfs -text
56
+ trainer_state.json filter=lfs diff=lfs merge=lfs -text
57
+ zero_to_fp32.py filter=lfs diff=lfs merge=lfs -text
58
+ latest filter=lfs diff=lfs merge=lfs -text
59
+ LICENSE filter=lfs diff=lfs merge=lfs -text
60
+ README.md filter=lfs diff=lfs merge=lfs -text
61
+ rng_state_2.pth filter=lfs diff=lfs merge=lfs -text
LICENSE CHANGED
@@ -1,54 +1,3 @@
1
- Qwen RESEARCH LICENSE AGREEMENT
2
-
3
- Qwen RESEARCH LICENSE AGREEMENT Release Date: September 19, 2024
4
-
5
- By clicking to agree or by using or distributing any portion or element of the Qwen Materials, you will be deemed to have recognized and accepted the content of this Agreement, which is effective immediately.
6
-
7
- 1. Definitions
8
- a. This Qwen RESEARCH LICENSE AGREEMENT (this "Agreement") shall mean the terms and conditions for use, reproduction, distribution and modification of the Materials as defined by this Agreement.
9
- b. "We" (or "Us") shall mean Alibaba Cloud.
10
- c. "You" (or "Your") shall mean a natural person or legal entity exercising the rights granted by this Agreement and/or using the Materials for any purpose and in any field of use.
11
- d. "Third Parties" shall mean individuals or legal entities that are not under common control with us or you.
12
- e. "Qwen" shall mean the large language models, and software and algorithms, consisting of trained model weights, parameters (including optimizer states), machine-learning model code, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by us.
13
- f. "Materials" shall mean, collectively, Alibaba Cloud's proprietary Qwen and Documentation (and any portion thereof) made available under this Agreement.
14
- g. "Source" form shall mean the preferred form for making modifications, including but not limited to model source code, documentation source, and configuration files.
15
- h. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.
16
- i. "Non-Commercial" shall mean for research or evaluation purposes only.
17
-
18
- 2. Grant of Rights
19
- a. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Alibaba Cloud's intellectual property or other rights owned by us embodied in the Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Materials FOR NON-COMMERCIAL PURPOSES ONLY.
20
- b. If you are commercially using the Materials, you shall request a license from us.
21
-
22
- 3. Redistribution
23
- You may distribute copies or make the Materials, or derivative works thereof, available as part of a product or service that contains any of them, with or without modifications, and in Source or Object form, provided that you meet the following conditions:
24
- a. You shall give any other recipients of the Materials or derivative works a copy of this Agreement;
25
- b. You shall cause any modified files to carry prominent notices stating that you changed the files;
26
- c. You shall retain in all copies of the Materials that you distribute the following attribution notices within a "Notice" text file distributed as a part of such copies: "Qwen is licensed under the Qwen RESEARCH LICENSE AGREEMENT, Copyright (c) Alibaba Cloud. All Rights Reserved."; and
27
- d. You may add your own copyright statement to your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of your modifications, or for any such derivative works as a whole, provided your use, reproduction, and distribution of the work otherwise complies with the terms and conditions of this Agreement.
28
-
29
- 4. Rules of use
30
- a. The Materials may be subject to export controls or restrictions in China, the United States or other countries or regions. You shall comply with applicable laws and regulations in your use of the Materials.
31
- b. If you use the Materials or any outputs or results therefrom to create, train, fine-tune, or improve an AI model that is distributed or made available, you shall prominently display “Built with Qwen” or “Improved using Qwen” in the related product documentation.
32
-
33
- 5. Intellectual Property
34
- a. We retain ownership of all intellectual property rights in and to the Materials and derivatives made by or for us. Conditioned upon compliance with the terms and conditions of this Agreement, with respect to any derivative works and modifications of the Materials that are made by you, you are and will be the owner of such derivative works and modifications.
35
- b. No trademark license is granted to use the trade names, trademarks, service marks, or product names of us, except as required to fulfill notice requirements under this Agreement or as required for reasonable and customary use in describing and redistributing the Materials.
36
- c. If you commence a lawsuit or other proceedings (including a cross-claim or counterclaim in a lawsuit) against us or any entity alleging that the Materials or any output therefrom, or any part of the foregoing, infringe any intellectual property or other right owned or licensable by you, then all licenses granted to you under this Agreement shall terminate as of the date such lawsuit or other proceeding is commenced or brought.
37
-
38
- 6. Disclaimer of Warranty and Limitation of Liability
39
- a. We are not obligated to support, update, provide training for, or develop any further version of the Qwen Materials or to grant any license thereto.
40
- b. THE MATERIALS ARE PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. WE MAKE NO WARRANTY AND ASSUME NO RESPONSIBILITY FOR THE SAFETY OR STABILITY OF THE MATERIALS AND ANY OUTPUT THEREFROM.
41
- c. IN NO EVENT SHALL WE BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO ANY DIRECT, OR INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING FROM YOUR USE OR INABILITY TO USE THE MATERIALS OR ANY OUTPUT OF IT, NO MATTER HOW IT’S CAUSED.
42
- d. You will defend, indemnify and hold harmless us from and against any claim by any third party arising out of or related to your use or distribution of the Materials.
43
-
44
- 7. Survival and Termination.
45
- a. The term of this Agreement shall commence upon your acceptance of this Agreement or access to the Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein.
46
- b. We may terminate this Agreement if you breach any of the terms or conditions of this Agreement. Upon termination of this Agreement, you must delete and cease use of the Materials. Sections 6 and 8 shall survive the termination of this Agreement.
47
-
48
- 8. Governing Law and Jurisdiction.
49
- a. This Agreement and any dispute arising out of or relating to it will be governed by the laws of China, without regard to conflict of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement.
50
- b. The People's Courts in Hangzhou City shall have exclusive jurisdiction over any dispute arising out of this Agreement.
51
-
52
- 9. Other Terms and Conditions.
53
- a. Any arrangements, understandings, or agreements regarding the Material not stated herein are separate from and independent of the terms and conditions of this Agreement. You shall request a separate license from us, if you use the Materials in ways not expressly agreed to in this Agreement.
54
- b. We shall not be bound by any additional or different terms or conditions communicated by you unless expressly agreed.
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef52482bb785733093dc9a2e8edd8e764c77d12d8e9d8f10a80c9b547d32d0f9
3
+ size 7388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -1,30 +1,3 @@
1
- ---
2
- {}
3
- ---
4
- # Introducing SmallThinker-3B: A Lightweight Model Fine-tuned on QwQ Synthetic Data
5
-
6
- We introduce **SmallThinker-3B**, a new model fine-tuned from the [Qwen2.5-3b-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) model using synthetic data generated by [QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview).
7
-
8
- ## Benchmark Performance
9
-
10
- | Model | AMPS_Hard Score |
11
- |---------|----------------|
12
- | SmallThinker | 58.0 |
13
- | GPT-4o (2024-08-06) | 54.0 |
14
- | Qwen2.5-3B-Instruct | 44.0 |
15
-
16
-
17
-
18
- ## Intended Use Cases
19
-
20
- SmallThinker is designed for the following use cases:
21
-
22
- 1. **Edge Deployment:** Its small size makes it ideal for deployment on resource-constrained devices.
23
- 2. **Draft Model for QwQ-32B-Preview:** QwQ can serve as a fast and efficient draft model for the larger QwQ-32B-Preview model.
24
-
25
- ## Limitations & Disclaimer
26
-
27
- Please be aware of the following limitations:
28
-
29
- * **Language Limitation:** The model has only been trained on English-language datasets, hence its capabilities in other languages are still lacking.
30
- * **Unpredictable Outputs:** The model may produce unexpected outputs due to its size and probabilistic generation paradigm. Users should exercise caution and validate the model's responses.
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:600e3da1009533dd07478ab3f5508dd8cc1e72fa18bbfd84900bd0041e5b3c47
3
+ size 1242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
added_tokens.json CHANGED
@@ -1,26 +1,3 @@
1
- {
2
- "</thinking>": 151666,
3
- "</tool_call>": 151658,
4
- "<thinking>": 151665,
5
- "<tool_call>": 151657,
6
- "<|box_end|>": 151649,
7
- "<|box_start|>": 151648,
8
- "<|endoftext|>": 151643,
9
- "<|file_sep|>": 151664,
10
- "<|fim_middle|>": 151660,
11
- "<|fim_pad|>": 151662,
12
- "<|fim_prefix|>": 151659,
13
- "<|fim_suffix|>": 151661,
14
- "<|im_end|>": 151645,
15
- "<|im_start|>": 151644,
16
- "<|image_pad|>": 151655,
17
- "<|object_ref_end|>": 151647,
18
- "<|object_ref_start|>": 151646,
19
- "<|quad_end|>": 151651,
20
- "<|quad_start|>": 151650,
21
- "<|repo_name|>": 151663,
22
- "<|video_pad|>": 151656,
23
- "<|vision_end|>": 151653,
24
- "<|vision_pad|>": 151654,
25
- "<|vision_start|>": 151652
26
- }
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1de0cdfa04c3e37ecd927b75f7fa41e83275ccda332e8734ae815fbef81f40fe
3
+ size 654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1,28 +1,3 @@
1
- {
2
- "_name_or_path": ".",
3
- "architectures": [
4
- "Qwen2ForCausalLM"
5
- ],
6
- "attention_dropout": 0.0,
7
- "bos_token_id": 151643,
8
- "eos_token_id": 151645,
9
- "hidden_act": "silu",
10
- "hidden_size": 2048,
11
- "initializer_range": 0.02,
12
- "intermediate_size": 11008,
13
- "max_position_embeddings": 32768,
14
- "max_window_layers": 70,
15
- "model_type": "qwen2",
16
- "num_attention_heads": 16,
17
- "num_hidden_layers": 36,
18
- "num_key_value_heads": 2,
19
- "rms_norm_eps": 1e-06,
20
- "rope_theta": 1000000.0,
21
- "sliding_window": null,
22
- "tie_word_embeddings": true,
23
- "torch_dtype": "bfloat16",
24
- "transformers_version": "4.43.4",
25
- "use_cache": true,
26
- "use_sliding_window": false,
27
- "vocab_size": 151936
28
- }
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d334e7ed8a9cebc51e72b4e1f3ec275e2b250941094e888ba2f5e3a16a582cbf
3
+ size 724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generation_config.json CHANGED
@@ -1,14 +1,3 @@
1
- {
2
- "bos_token_id": 151643,
3
- "do_sample": true,
4
- "eos_token_id": [
5
- 151645,
6
- 151643
7
- ],
8
- "pad_token_id": 151643,
9
- "repetition_penalty": 1.10,
10
- "temperature": 0.7,
11
- "top_k": 20,
12
- "top_p": 0.8,
13
- "transformers_version": "4.43.4"
14
- }
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7e7ce458658b2d40d9eb213b91b77a8bf698845ab89360976722d7ac46928a3
3
+ size 242
 
 
 
 
 
 
 
 
 
 
 
latest CHANGED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f19744210d6ae9796d41d95c5c8656a419e3fe43cc8ca939f78589f492249d1c
3
+ size 16
merges.txt CHANGED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00002.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:97372839d1563be1cf18840e6d755701ed2be18024c4474d1fd146b0817bafe1
3
  size 4957560304
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f6022b419eb0e2ce1a6ff3e39f6a8ddf4dd0cf27637b07e91183be663adccb3
3
  size 4957560304
model-00002-of-00002.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f90dcf4a60d06772f9469335790546913729f050d2c2af5ddbbd50b47d390142
3
  size 1836696752
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cef9b2229952bd08eb0442a7759b04ef0f1361030954603dc0a0f0965173b376
3
  size 1836696752
model.safetensors.index.json CHANGED
@@ -1,442 +1,3 @@
1
- {
2
- "metadata": {
3
- "total_size": 6794207232
4
- },
5
- "weight_map": {
6
- "lm_head.weight": "model-00002-of-00002.safetensors",
7
- "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
- "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
- "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
- "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
- "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
- "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
- "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
- "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
- "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
- "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
- "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
- "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
- "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
- "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
- "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
- "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
- "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
- "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
- "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
- "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
- "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
- "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
- "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
- "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
- "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
- "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
- "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
- "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
- "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
- "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
- "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
- "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
- "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
- "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
- "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
- "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
- "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
- "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
- "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
- "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
- "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
- "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
- "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
- "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
- "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
- "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
- "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
- "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
- "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
- "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
- "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
- "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
- "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
- "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
- "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
- "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
- "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
- "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
- "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
- "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
- "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
- "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
- "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
- "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
- "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
- "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
- "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
- "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
- "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
- "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
- "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
- "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
- "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
- "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
- "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
- "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
- "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
- "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
- "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
- "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
- "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
- "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
- "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
- "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
- "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
- "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
- "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
- "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
- "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
- "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
- "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
- "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
- "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
- "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
- "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
- "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
- "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
- "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
- "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
- "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
- "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
- "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
- "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
- "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
- "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
- "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
- "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
- "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
- "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
- "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
- "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
- "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
- "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
- "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
- "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
- "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
- "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
- "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
- "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
- "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
- "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
- "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
- "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
- "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
- "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
- "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
- "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
- "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
- "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
- "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
- "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
- "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
- "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
- "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
141
- "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
142
- "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
- "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
- "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
- "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
- "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
- "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
- "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
- "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
- "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
- "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
- "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
- "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
- "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
- "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
- "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
- "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
- "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
- "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
- "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
- "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
- "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
- "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
- "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
- "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
- "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
- "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
- "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
- "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
170
- "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
171
- "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
172
- "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
173
- "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
174
- "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
175
- "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
- "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
- "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
- "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
179
- "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
180
- "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
181
- "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
182
- "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
183
- "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
184
- "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
185
- "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
- "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
187
- "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
- "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
- "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
- "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
- "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
- "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
- "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
194
- "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
195
- "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
196
- "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
197
- "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
198
- "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
199
- "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
200
- "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
- "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
202
- "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
203
- "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
204
- "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
205
- "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
206
- "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
207
- "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
208
- "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
209
- "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
210
- "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
211
- "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
212
- "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
213
- "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
214
- "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
215
- "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
216
- "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
217
- "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
218
- "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
219
- "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
220
- "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
221
- "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
- "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
223
- "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
- "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
- "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
- "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
- "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
- "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
- "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
230
- "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
231
- "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
232
- "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
233
- "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
234
- "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
235
- "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
236
- "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
237
- "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
238
- "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
239
- "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
240
- "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
241
- "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
242
- "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
243
- "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
244
- "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
245
- "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
246
- "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
247
- "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
248
- "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
249
- "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
250
- "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
251
- "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
252
- "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
253
- "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
254
- "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
255
- "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
256
- "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
257
- "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
258
- "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
259
- "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
- "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
- "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
- "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
- "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
- "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
- "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
266
- "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
- "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
- "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
269
- "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
- "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
271
- "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
272
- "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
- "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
- "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
- "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
- "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
- "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
- "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
- "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
- "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
- "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
- "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
- "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
- "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
- "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
- "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
- "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
- "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
- "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
- "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
- "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
- "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
- "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
- "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
- "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
- "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
- "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
- "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
- "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
- "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
- "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
- "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
- "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
- "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
- "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
- "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
- "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
- "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
- "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
- "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
- "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
- "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
- "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
- "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
- "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
- "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
- "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
- "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
- "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
- "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
- "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
- "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
- "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
- "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
- "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
- "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
- "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
- "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
- "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
- "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
- "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
- "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
- "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
- "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
- "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
- "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
- "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
- "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
- "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
- "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
- "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
- "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
- "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
- "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
- "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
- "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
- "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
- "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
- "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
- "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
- "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
- "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
- "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
- "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
- "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
- "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
- "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
- "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
- "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
- "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
- "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
- "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
- "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
- "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
- "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
- "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
- "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
- "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
- "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
- "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
- "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
- "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
- "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
- "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
- "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
- "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
- "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
- "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
- "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
- "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
- "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
- "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
- "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
- "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
- "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
- "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
- "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
- "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
- "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
- "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
- "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
- "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
- "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
- "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
- "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
- "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
- "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
- "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
- "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
- "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
- "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
- "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
- "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
- "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
- "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
- "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
- "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
- "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
- "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
- "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
- "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
- "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
- "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
- "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
- "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
- "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
- "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
- "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
- "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
- "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
- "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
- "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
- "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
- "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
- "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
- "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
- "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
- "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
- "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
- "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
- "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
- "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
- "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
- "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
- "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
- "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
- "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
- "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
- "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
- "model.norm.weight": "model-00002-of-00002.safetensors"
441
- }
442
- }
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b16893349fcc70e86aed42f02678cadf76d157086294b9bd275de7a9d4b9625e
3
+ size 35639
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08282b46825aa78d10fe10e3fea89555c5b5a691b261a3ddfd58fcb58370edff
3
+ size 15984
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbab71d98a3a9a92df82a6bba463947327c3a1bcf35cd9f4f46114641fc42dd9
3
+ size 15984
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:caac82d57d878d30219a4f9ec289a97ff90c53afc160b968f251b3fd3454b8d8
3
+ size 15984
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19762d2d370222b01817da11bbaa6665d542293373186d66f754e7246bb861ed
3
+ size 15984
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00c7508b346a7d3c5c23392845f1d013331114ade778794b76e919cb3ed5d33e
3
+ size 15984
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b89de7d14dd20a191f56b74c816ef8b7fe5c171e31efbeadbf321c4539ed68c3
3
+ size 15984
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c71152053553e6e22d670fbc4fd7550bf8a046b54cad7b71869787986a6a42c
3
+ size 15984
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b67db12a26a26ffe03d9afc84a43857eb2e5b2fec2dd189653b415f74208190
3
+ size 15984
scheduler.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:42e8712ac965bbe406c38d6051f74f4c99552ac2962b054dbe820df8fb9dcd3c
3
  size 1064
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59c713d49f247843356bb8c3548f05ad687dc637fbf7ded0cbd60cedf3e38301
3
  size 1064
special_tokens_map.json CHANGED
@@ -1,45 +1,3 @@
1
- {
2
- "additional_special_tokens": [
3
- "<|im_start|>",
4
- "<|im_end|>",
5
- "<|object_ref_start|>",
6
- "<|object_ref_end|>",
7
- "<|box_start|>",
8
- "<|box_end|>",
9
- "<|quad_start|>",
10
- "<|quad_end|>",
11
- "<|vision_start|>",
12
- "<|vision_end|>",
13
- "<|vision_pad|>",
14
- "<|image_pad|>",
15
- "<|video_pad|>",
16
- {
17
- "content": "<thinking>",
18
- "lstrip": false,
19
- "normalized": false,
20
- "rstrip": false,
21
- "single_word": false
22
- },
23
- {
24
- "content": "</thinking>",
25
- "lstrip": false,
26
- "normalized": false,
27
- "rstrip": false,
28
- "single_word": false
29
- }
30
- ],
31
- "eos_token": {
32
- "content": "<|im_end|>",
33
- "lstrip": false,
34
- "normalized": false,
35
- "rstrip": false,
36
- "single_word": false
37
- },
38
- "pad_token": {
39
- "content": "<|endoftext|>",
40
- "lstrip": false,
41
- "normalized": false,
42
- "rstrip": false,
43
- "single_word": false
44
- }
45
- }
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:215bf3e33ef8cb351c0a785f1e006216a0ffa8d56cfeb3d2c9b858fea4f9051a
3
+ size 650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tokenizer.json CHANGED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json CHANGED
@@ -1,226 +1,3 @@
1
- {
2
- "add_bos_token": false,
3
- "add_prefix_space": false,
4
- "added_tokens_decoder": {
5
- "151643": {
6
- "content": "<|endoftext|>",
7
- "lstrip": false,
8
- "normalized": false,
9
- "rstrip": false,
10
- "single_word": false,
11
- "special": true
12
- },
13
- "151644": {
14
- "content": "<|im_start|>",
15
- "lstrip": false,
16
- "normalized": false,
17
- "rstrip": false,
18
- "single_word": false,
19
- "special": true
20
- },
21
- "151645": {
22
- "content": "<|im_end|>",
23
- "lstrip": false,
24
- "normalized": false,
25
- "rstrip": false,
26
- "single_word": false,
27
- "special": true
28
- },
29
- "151646": {
30
- "content": "<|object_ref_start|>",
31
- "lstrip": false,
32
- "normalized": false,
33
- "rstrip": false,
34
- "single_word": false,
35
- "special": true
36
- },
37
- "151647": {
38
- "content": "<|object_ref_end|>",
39
- "lstrip": false,
40
- "normalized": false,
41
- "rstrip": false,
42
- "single_word": false,
43
- "special": true
44
- },
45
- "151648": {
46
- "content": "<|box_start|>",
47
- "lstrip": false,
48
- "normalized": false,
49
- "rstrip": false,
50
- "single_word": false,
51
- "special": true
52
- },
53
- "151649": {
54
- "content": "<|box_end|>",
55
- "lstrip": false,
56
- "normalized": false,
57
- "rstrip": false,
58
- "single_word": false,
59
- "special": true
60
- },
61
- "151650": {
62
- "content": "<|quad_start|>",
63
- "lstrip": false,
64
- "normalized": false,
65
- "rstrip": false,
66
- "single_word": false,
67
- "special": true
68
- },
69
- "151651": {
70
- "content": "<|quad_end|>",
71
- "lstrip": false,
72
- "normalized": false,
73
- "rstrip": false,
74
- "single_word": false,
75
- "special": true
76
- },
77
- "151652": {
78
- "content": "<|vision_start|>",
79
- "lstrip": false,
80
- "normalized": false,
81
- "rstrip": false,
82
- "single_word": false,
83
- "special": true
84
- },
85
- "151653": {
86
- "content": "<|vision_end|>",
87
- "lstrip": false,
88
- "normalized": false,
89
- "rstrip": false,
90
- "single_word": false,
91
- "special": true
92
- },
93
- "151654": {
94
- "content": "<|vision_pad|>",
95
- "lstrip": false,
96
- "normalized": false,
97
- "rstrip": false,
98
- "single_word": false,
99
- "special": true
100
- },
101
- "151655": {
102
- "content": "<|image_pad|>",
103
- "lstrip": false,
104
- "normalized": false,
105
- "rstrip": false,
106
- "single_word": false,
107
- "special": true
108
- },
109
- "151656": {
110
- "content": "<|video_pad|>",
111
- "lstrip": false,
112
- "normalized": false,
113
- "rstrip": false,
114
- "single_word": false,
115
- "special": true
116
- },
117
- "151657": {
118
- "content": "<tool_call>",
119
- "lstrip": false,
120
- "normalized": false,
121
- "rstrip": false,
122
- "single_word": false,
123
- "special": false
124
- },
125
- "151658": {
126
- "content": "</tool_call>",
127
- "lstrip": false,
128
- "normalized": false,
129
- "rstrip": false,
130
- "single_word": false,
131
- "special": false
132
- },
133
- "151659": {
134
- "content": "<|fim_prefix|>",
135
- "lstrip": false,
136
- "normalized": false,
137
- "rstrip": false,
138
- "single_word": false,
139
- "special": false
140
- },
141
- "151660": {
142
- "content": "<|fim_middle|>",
143
- "lstrip": false,
144
- "normalized": false,
145
- "rstrip": false,
146
- "single_word": false,
147
- "special": false
148
- },
149
- "151661": {
150
- "content": "<|fim_suffix|>",
151
- "lstrip": false,
152
- "normalized": false,
153
- "rstrip": false,
154
- "single_word": false,
155
- "special": false
156
- },
157
- "151662": {
158
- "content": "<|fim_pad|>",
159
- "lstrip": false,
160
- "normalized": false,
161
- "rstrip": false,
162
- "single_word": false,
163
- "special": false
164
- },
165
- "151663": {
166
- "content": "<|repo_name|>",
167
- "lstrip": false,
168
- "normalized": false,
169
- "rstrip": false,
170
- "single_word": false,
171
- "special": false
172
- },
173
- "151664": {
174
- "content": "<|file_sep|>",
175
- "lstrip": false,
176
- "normalized": false,
177
- "rstrip": false,
178
- "single_word": false,
179
- "special": false
180
- },
181
- "151665": {
182
- "content": "<thinking>",
183
- "lstrip": false,
184
- "normalized": false,
185
- "rstrip": false,
186
- "single_word": false,
187
- "special": true
188
- },
189
- "151666": {
190
- "content": "</thinking>",
191
- "lstrip": false,
192
- "normalized": false,
193
- "rstrip": false,
194
- "single_word": false,
195
- "special": true
196
- }
197
- },
198
- "additional_special_tokens": [
199
- "<|im_start|>",
200
- "<|im_end|>",
201
- "<|object_ref_start|>",
202
- "<|object_ref_end|>",
203
- "<|box_start|>",
204
- "<|box_end|>",
205
- "<|quad_start|>",
206
- "<|quad_end|>",
207
- "<|vision_start|>",
208
- "<|vision_end|>",
209
- "<|vision_pad|>",
210
- "<|image_pad|>",
211
- "<|video_pad|>",
212
- "<thinking>",
213
- "</thinking>"
214
- ],
215
- "bos_token": null,
216
- "chat_template": "{% set system_message = 'You are a helpful assistant.' %}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% if system_message is defined %}{{ '<|im_start|>system\n' + system_message + '<|im_end|>\n' }}{% endif %}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|im_start|>user\n' + content + '<|im_end|>\n<|im_start|>assistant\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|im_end|>' + '\n' }}{% endif %}{% endfor %}",
217
- "clean_up_tokenization_spaces": false,
218
- "eos_token": "<|im_end|>",
219
- "errors": "replace",
220
- "model_max_length": 131072,
221
- "pad_token": "<|endoftext|>",
222
- "padding_side": "right",
223
- "split_special_tokens": false,
224
- "tokenizer_class": "Qwen2Tokenizer",
225
- "unk_token": null
226
- }
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98fb25195609598b0e600c2b2a9fcd007d7edd14e795bd55948a0596267f330d
3
+ size 5725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trainer_state.json CHANGED
The diff for this file is too large to render. See raw diff
 
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:083503498265421e5ad4cfe455a51b21126824c3d2a156ba8cc3377f6ad87660
3
  size 6584
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f85d2d515be5f4aa9c1d16047d9a4d6979832e3c19848ff8b8cd665bf8d75c8f
3
  size 6584
vocab.json CHANGED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py CHANGED
@@ -1,604 +1,3 @@
1
- #!/usr/bin/env python
2
-
3
- # Copyright (c) Microsoft Corporation.
4
- # SPDX-License-Identifier: Apache-2.0
5
-
6
- # DeepSpeed Team
7
-
8
- # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
- # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
- # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
- # application.
12
- #
13
- # example: python zero_to_fp32.py . pytorch_model.bin
14
-
15
- import argparse
16
- import torch
17
- import glob
18
- import math
19
- import os
20
- import re
21
- from collections import OrderedDict
22
- from dataclasses import dataclass
23
-
24
- # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
- # DeepSpeed data structures it has to be available in the current python environment.
26
- from deepspeed.utils import logger
27
- from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
- FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
- FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
-
31
-
32
- @dataclass
33
- class zero_model_state:
34
- buffers: dict()
35
- param_shapes: dict()
36
- shared_params: list
37
- ds_version: int
38
- frozen_param_shapes: dict()
39
- frozen_param_fragments: dict()
40
-
41
-
42
- debug = 0
43
-
44
- # load to cpu
45
- device = torch.device('cpu')
46
-
47
-
48
- def atoi(text):
49
- return int(text) if text.isdigit() else text
50
-
51
-
52
- def natural_keys(text):
53
- '''
54
- alist.sort(key=natural_keys) sorts in human order
55
- http://nedbatchelder.com/blog/200712/human_sorting.html
56
- (See Toothy's implementation in the comments)
57
- '''
58
- return [atoi(c) for c in re.split(r'(\d+)', text)]
59
-
60
-
61
- def get_model_state_file(checkpoint_dir, zero_stage):
62
- if not os.path.isdir(checkpoint_dir):
63
- raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
-
65
- # there should be only one file
66
- if zero_stage <= 2:
67
- file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
- elif zero_stage == 3:
69
- file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
-
71
- if not os.path.exists(file):
72
- raise FileNotFoundError(f"can't find model states file at '{file}'")
73
-
74
- return file
75
-
76
-
77
- def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
- # XXX: need to test that this simple glob rule works for multi-node setup too
79
- ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
-
81
- if len(ckpt_files) == 0:
82
- raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
-
84
- return ckpt_files
85
-
86
-
87
- def get_optim_files(checkpoint_dir):
88
- return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
-
90
-
91
- def get_model_state_files(checkpoint_dir):
92
- return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
-
94
-
95
- def parse_model_states(files):
96
- zero_model_states = []
97
- for file in files:
98
- state_dict = torch.load(file, map_location=device)
99
-
100
- if BUFFER_NAMES not in state_dict:
101
- raise ValueError(f"{file} is not a model state checkpoint")
102
- buffer_names = state_dict[BUFFER_NAMES]
103
- if debug:
104
- print("Found buffers:", buffer_names)
105
-
106
- # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
- buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
- param_shapes = state_dict[PARAM_SHAPES]
109
-
110
- # collect parameters that are included in param_shapes
111
- param_names = []
112
- for s in param_shapes:
113
- for name in s.keys():
114
- param_names.append(name)
115
-
116
- # update with frozen parameters
117
- frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
- if frozen_param_shapes is not None:
119
- if debug:
120
- print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
- param_names += list(frozen_param_shapes.keys())
122
-
123
- # handle shared params
124
- shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
-
126
- ds_version = state_dict.get(DS_VERSION, None)
127
-
128
- frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
-
130
- z_model_state = zero_model_state(buffers=buffers,
131
- param_shapes=param_shapes,
132
- shared_params=shared_params,
133
- ds_version=ds_version,
134
- frozen_param_shapes=frozen_param_shapes,
135
- frozen_param_fragments=frozen_param_fragments)
136
- zero_model_states.append(z_model_state)
137
-
138
- return zero_model_states
139
-
140
-
141
- def parse_optim_states(files, ds_checkpoint_dir):
142
-
143
- total_files = len(files)
144
- state_dicts = []
145
- for f in files:
146
- state_dict = torch.load(f, map_location=device)
147
- # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
- # and also handle the case where it was already removed by another helper script
149
- state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
- state_dicts.append(state_dict)
151
-
152
- if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
- raise ValueError(f"{files[0]} is not a zero checkpoint")
154
- zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
- world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
-
157
- # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
- # parameters can be different from data parallelism for non-expert parameters. So we can just
159
- # use the max of the partition_count to get the dp world_size.
160
-
161
- if type(world_size) is list:
162
- world_size = max(world_size)
163
-
164
- if world_size != total_files:
165
- raise ValueError(
166
- f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
- "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
- )
169
-
170
- # the groups are named differently in each stage
171
- if zero_stage <= 2:
172
- fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
- elif zero_stage == 3:
174
- fp32_groups_key = FP32_FLAT_GROUPS
175
- else:
176
- raise ValueError(f"unknown zero stage {zero_stage}")
177
-
178
- if zero_stage <= 2:
179
- fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
- elif zero_stage == 3:
181
- # if there is more than one param group, there will be multiple flattened tensors - one
182
- # flattened tensor per group - for simplicity merge them into a single tensor
183
- #
184
- # XXX: could make the script more memory efficient for when there are multiple groups - it
185
- # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
-
187
- fp32_flat_groups = [
188
- torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
- ]
190
-
191
- return zero_stage, world_size, fp32_flat_groups
192
-
193
-
194
- def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
- """
196
- Returns fp32 state_dict reconstructed from ds checkpoint
197
-
198
- Args:
199
- - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
-
201
- """
202
- print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
-
204
- optim_files = get_optim_files(ds_checkpoint_dir)
205
- zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
- print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
-
208
- model_files = get_model_state_files(ds_checkpoint_dir)
209
-
210
- zero_model_states = parse_model_states(model_files)
211
- print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
-
213
- if zero_stage <= 2:
214
- return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
- exclude_frozen_parameters)
216
- elif zero_stage == 3:
217
- return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
- exclude_frozen_parameters)
219
-
220
-
221
- def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
- return
224
-
225
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
- frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
-
228
- if debug:
229
- num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
- print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
-
232
- wanted_params = len(frozen_param_shapes)
233
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
- avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
- print(f'Frozen params: Have {avail_numel} numels to process.')
236
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
-
238
- total_params = 0
239
- total_numel = 0
240
- for name, shape in frozen_param_shapes.items():
241
- total_params += 1
242
- unpartitioned_numel = shape.numel()
243
- total_numel += unpartitioned_numel
244
-
245
- state_dict[name] = frozen_param_fragments[name]
246
-
247
- if debug:
248
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
-
250
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
-
252
-
253
- def _has_callable(obj, fn):
254
- attr = getattr(obj, fn, None)
255
- return callable(attr)
256
-
257
-
258
- def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
- param_shapes = zero_model_states[0].param_shapes
260
-
261
- # Reconstruction protocol:
262
- #
263
- # XXX: document this
264
-
265
- if debug:
266
- for i in range(world_size):
267
- for j in range(len(fp32_flat_groups[0])):
268
- print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
-
270
- # XXX: memory usage doubles here (zero2)
271
- num_param_groups = len(fp32_flat_groups[0])
272
- merged_single_partition_of_fp32_groups = []
273
- for i in range(num_param_groups):
274
- merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
- full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
- merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
- avail_numel = sum(
278
- [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
-
280
- if debug:
281
- wanted_params = sum([len(shapes) for shapes in param_shapes])
282
- wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
- # not asserting if there is a mismatch due to possible padding
284
- print(f"Have {avail_numel} numels to process.")
285
- print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
-
287
- # params
288
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
- # out-of-core computing solution
290
- total_numel = 0
291
- total_params = 0
292
- for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
- offset = 0
294
- avail_numel = full_single_fp32_vector.numel()
295
- for name, shape in shapes.items():
296
-
297
- unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
- total_numel += unpartitioned_numel
299
- total_params += 1
300
-
301
- if debug:
302
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
- state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
- offset += unpartitioned_numel
305
-
306
- # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
- # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
- # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
- # live optimizer object, so we are checking that the numbers are within the right range
310
- align_to = 2 * world_size
311
-
312
- def zero2_align(x):
313
- return align_to * math.ceil(x / align_to)
314
-
315
- if debug:
316
- print(f"original offset={offset}, avail_numel={avail_numel}")
317
-
318
- offset = zero2_align(offset)
319
- avail_numel = zero2_align(avail_numel)
320
-
321
- if debug:
322
- print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
-
324
- # Sanity check
325
- if offset != avail_numel:
326
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
-
328
- print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
-
330
-
331
- def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
- exclude_frozen_parameters):
333
- state_dict = OrderedDict()
334
-
335
- # buffers
336
- buffers = zero_model_states[0].buffers
337
- state_dict.update(buffers)
338
- if debug:
339
- print(f"added {len(buffers)} buffers")
340
-
341
- if not exclude_frozen_parameters:
342
- _zero2_merge_frozen_params(state_dict, zero_model_states)
343
-
344
- _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
-
346
- # recover shared parameters
347
- for pair in zero_model_states[0].shared_params:
348
- if pair[1] in state_dict:
349
- state_dict[pair[0]] = state_dict[pair[1]]
350
-
351
- return state_dict
352
-
353
-
354
- def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
- remainder = unpartitioned_numel % world_size
356
- padding_numel = (world_size - remainder) if remainder else 0
357
- partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
- return partitioned_numel, padding_numel
359
-
360
-
361
- def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
- return
364
-
365
- if debug:
366
- for i in range(world_size):
367
- num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
- print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
-
370
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
- wanted_params = len(frozen_param_shapes)
372
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
- avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
- print(f'Frozen params: Have {avail_numel} numels to process.')
375
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
-
377
- total_params = 0
378
- total_numel = 0
379
- for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
- total_params += 1
381
- unpartitioned_numel = shape.numel()
382
- total_numel += unpartitioned_numel
383
-
384
- param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
- state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
-
387
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
-
389
- if debug:
390
- print(
391
- f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
- )
393
-
394
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
-
396
-
397
- def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
- param_shapes = zero_model_states[0].param_shapes
399
- avail_numel = fp32_flat_groups[0].numel() * world_size
400
- # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
- # param, re-consolidating each param, while dealing with padding if any
402
-
403
- # merge list of dicts, preserving order
404
- param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
-
406
- if debug:
407
- for i in range(world_size):
408
- print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
-
410
- wanted_params = len(param_shapes)
411
- wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
- # not asserting if there is a mismatch due to possible padding
413
- avail_numel = fp32_flat_groups[0].numel() * world_size
414
- print(f"Trainable params: Have {avail_numel} numels to process.")
415
- print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
-
417
- # params
418
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
- # out-of-core computing solution
420
- offset = 0
421
- total_numel = 0
422
- total_params = 0
423
- for name, shape in param_shapes.items():
424
-
425
- unpartitioned_numel = shape.numel()
426
- total_numel += unpartitioned_numel
427
- total_params += 1
428
-
429
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
-
431
- if debug:
432
- print(
433
- f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
- )
435
-
436
- # XXX: memory usage doubles here
437
- state_dict[name] = torch.cat(
438
- tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
- 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
- offset += partitioned_numel
441
-
442
- offset *= world_size
443
-
444
- # Sanity check
445
- if offset != avail_numel:
446
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
-
448
- print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
-
450
-
451
- def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
- exclude_frozen_parameters):
453
- state_dict = OrderedDict()
454
-
455
- # buffers
456
- buffers = zero_model_states[0].buffers
457
- state_dict.update(buffers)
458
- if debug:
459
- print(f"added {len(buffers)} buffers")
460
-
461
- if not exclude_frozen_parameters:
462
- _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
-
464
- _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
-
466
- # recover shared parameters
467
- for pair in zero_model_states[0].shared_params:
468
- if pair[1] in state_dict:
469
- state_dict[pair[0]] = state_dict[pair[1]]
470
-
471
- return state_dict
472
-
473
-
474
- def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
- """
476
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
- ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
- via a model hub.
479
-
480
- Args:
481
- - ``checkpoint_dir``: path to the desired checkpoint folder
482
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
- - ``exclude_frozen_parameters``: exclude frozen parameters
484
-
485
- Returns:
486
- - pytorch ``state_dict``
487
-
488
- Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
- you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
- the checkpoint.
491
-
492
- A typical usage might be ::
493
-
494
- from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
- # do the training and checkpoint saving
496
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
- model = model.cpu() # move to cpu
498
- model.load_state_dict(state_dict)
499
- # submit to model hub or save the model to share with others
500
-
501
- In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
- application. i.e. you will need to re-initialize the deepspeed engine, since
503
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
-
505
- If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
-
507
- """
508
- if tag is None:
509
- latest_path = os.path.join(checkpoint_dir, 'latest')
510
- if os.path.isfile(latest_path):
511
- with open(latest_path, 'r') as fd:
512
- tag = fd.read().strip()
513
- else:
514
- raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
-
516
- ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
-
518
- if not os.path.isdir(ds_checkpoint_dir):
519
- raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
-
521
- return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
-
523
-
524
- def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
- """
526
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
- loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
-
529
- Args:
530
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
- - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
- - ``exclude_frozen_parameters``: exclude frozen parameters
534
- """
535
-
536
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
- print(f"Saving fp32 state dict to {output_file}")
538
- torch.save(state_dict, output_file)
539
-
540
-
541
- def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
- """
543
- 1. Put the provided model to cpu
544
- 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
- 3. Load it into the provided model
546
-
547
- Args:
548
- - ``model``: the model object to update
549
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
-
552
- Returns:
553
- - ``model`: modified model
554
-
555
- Make sure you have plenty of CPU memory available before you call this function. If you don't
556
- have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
- conveniently placed for you in the checkpoint folder.
558
-
559
- A typical usage might be ::
560
-
561
- from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
- model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
- # submit to model hub or save the model to share with others
564
-
565
- Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
- of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
-
569
- """
570
- logger.info(f"Extracting fp32 weights")
571
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
-
573
- logger.info(f"Overwriting model with fp32 weights")
574
- model = model.cpu()
575
- model.load_state_dict(state_dict, strict=False)
576
-
577
- return model
578
-
579
-
580
- if __name__ == "__main__":
581
-
582
- parser = argparse.ArgumentParser()
583
- parser.add_argument("checkpoint_dir",
584
- type=str,
585
- help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
- parser.add_argument(
587
- "output_file",
588
- type=str,
589
- help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
- parser.add_argument("-t",
591
- "--tag",
592
- type=str,
593
- default=None,
594
- help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
- parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
- parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
- args = parser.parse_args()
598
-
599
- debug = args.debug
600
-
601
- convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
- args.output_file,
603
- tag=args.tag,
604
- exclude_frozen_parameters=args.exclude_frozen_parameters)
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47e22c3e2e9c55705ff72102ffd1146b607e80880f2011ced5bc969d11ea7b05
3
+ size 25314