|
--- |
|
license: cc-by-nc-sa-4.0 |
|
datasets: |
|
- Posos/MedNERF |
|
metrics: |
|
- f1 |
|
tags: |
|
- medical |
|
widget: |
|
- text: xeplion 50mg 2 fois par jour |
|
- text: doliprane 500 1 comprimé effervescent le matin pendant une semaine |
|
|
|
model-index: |
|
- name: Posos/ClinicalNER |
|
results: |
|
- task: |
|
type: token-classification |
|
name: Clinical NER |
|
dataset: |
|
type: Posos/MedNERF |
|
name: MedNERF |
|
split: test |
|
metrics: |
|
- type: f1 |
|
value: 0.804 |
|
name: micro-F1 score |
|
- type: precision |
|
value: 0.817 |
|
name: precision |
|
- type: recall |
|
value: 0.791 |
|
name: recall |
|
- type: accuracy |
|
value: 0.859 |
|
name: accuracy |
|
--- |
|
|
|
# ClinicalNER |
|
|
|
## Model Description |
|
|
|
This is a multilingual clinical NER model extracting DRUG, STRENGTH, FREQUENCY, DURATION, DOSAGE and FORM entities from a medical text. |
|
|
|
## Evaluation Metrics on [MedNERF dataset](https://huggingface.co/datasets/Posos/MedNERF) |
|
|
|
- Loss: 0.692 |
|
- Accuracy: 0.859 |
|
- Precision: 0.817 |
|
- Recall: 0.791 |
|
- micro-F1: 0.804 |
|
- macro-F1: 0.819 |
|
|
|
## Usage |
|
|
|
``` |
|
from transformers import AutoModelForTokenClassification, AutoTokenizer |
|
|
|
model = AutoModelForTokenClassification.from_pretrained("Posos/ClinicalNER") |
|
tokenizer = AutoTokenizer.from_pretrained("Posos/ClinicalNER") |
|
|
|
inputs = tokenizer("Take 2 pills every morning", return_tensors="pt") |
|
outputs = model(**inputs) |
|
``` |
|
|
|
## Citation information |
|
|
|
``` |
|
@inproceedings{mednerf, |
|
title = "Multilingual Clinical NER: Translation or Cross-lingual Transfer?", |
|
author = "Gaschi, Félix and Fontaine, Xavier and Rastin, Parisa and Toussaint, Yannick", |
|
booktitle = "Proceedings of the 5th Clinical Natural Language Processing Workshop", |
|
publisher = "Association for Computational Linguistics", |
|
year = "2023" |
|
} |
|
``` |