sparql-qwen / README.md
PopularPenguin's picture
End of training
c77c98b verified
|
raw
history blame
3.58 kB
metadata
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-Coder-0.5B
tags:
  - generated_from_trainer
model-index:
  - name: sparql-qwen
    results: []

sparql-qwen

This model is a fine-tuned version of Qwen/Qwen2.5-Coder-0.5B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6232

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.7485 0.1048 500 0.8336
0.7336 0.2096 1000 0.7696
0.6787 0.3143 1500 0.7376
0.6756 0.4191 2000 0.7190
0.6651 0.5239 2500 0.7038
0.6835 0.6287 3000 0.6932
0.6572 0.7334 3500 0.6810
0.6664 0.8382 4000 0.6773
0.6304 0.9430 4500 0.6675
0.7408 1.0478 5000 0.6648
0.7004 1.1526 5500 0.6616
0.6466 1.2573 6000 0.6579
0.6914 1.3621 6500 0.6543
0.6885 1.4669 7000 0.6507
0.6508 1.5717 7500 0.6478
0.7039 1.6764 8000 0.6442
0.665 1.7812 8500 0.6436
0.6483 1.8860 9000 0.6405
0.699 1.9908 9500 0.6373
0.4961 2.0956 10000 0.6380
0.5103 2.2003 10500 0.6367
0.5443 2.3051 11000 0.6349
0.4813 2.4099 11500 0.6340
0.5555 2.5147 12000 0.6324
0.5711 2.6194 12500 0.6313
0.5088 2.7242 13000 0.6309
0.492 2.8290 13500 0.6297
0.4936 2.9338 14000 0.6267
0.6411 3.0386 14500 0.6271
0.6618 3.1433 15000 0.6267
0.6212 3.2481 15500 0.6260
0.6337 3.3529 16000 0.6253
0.6412 3.4577 16500 0.6234
0.6208 3.5624 17000 0.6232
0.676 3.6672 17500 0.6226
0.6465 3.7720 18000 0.6217
0.6157 3.8768 18500 0.6210
0.6622 3.9816 19000 0.6200
0.4811 4.0863 19500 0.6219
0.5264 4.1911 20000 0.6213
0.4738 4.2959 20500 0.6232

Framework versions

  • PEFT 0.14.0
  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3