add results on dev audio with step 24000
Browse files
README.md
CHANGED
@@ -20,10 +20,10 @@ model-index:
|
|
20 |
metrics:
|
21 |
- name: Test WER
|
22 |
type: wer
|
23 |
-
value:
|
24 |
- name: Test CER
|
25 |
type: cer
|
26 |
-
value:
|
27 |
- task:
|
28 |
name: Automatic Speech Recognition
|
29 |
type: automatic-speech-recognition
|
@@ -34,10 +34,11 @@ model-index:
|
|
34 |
metrics:
|
35 |
- name: Test WER
|
36 |
type: wer
|
37 |
-
value:
|
38 |
- name: Test CER
|
39 |
type: cer
|
40 |
-
value:
|
|
|
41 |
---
|
42 |
|
43 |
## Model description
|
@@ -83,8 +84,18 @@ The following hyperparameters were used during training:
|
|
83 |
| 0.8488 | 4.59 | 16000 | inf | 0.2187 |
|
84 |
| 0.8359 | 4.87 | 17000 | inf | 0.2172 |
|
85 |
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
Got some issue with validation loss calculation.
|
90 |
|
|
|
20 |
metrics:
|
21 |
- name: Test WER
|
22 |
type: wer
|
23 |
+
value: to recompute with STEP 24000
|
24 |
- name: Test CER
|
25 |
type: cer
|
26 |
+
value: to recompute with STEP 24000
|
27 |
- task:
|
28 |
name: Automatic Speech Recognition
|
29 |
type: automatic-speech-recognition
|
|
|
34 |
metrics:
|
35 |
- name: Test WER
|
36 |
type: wer
|
37 |
+
value: 35.29
|
38 |
- name: Test CER
|
39 |
type: cer
|
40 |
+
value: 13.94
|
41 |
+
|
42 |
---
|
43 |
|
44 |
## Model description
|
|
|
84 |
| 0.8488 | 4.59 | 16000 | inf | 0.2187 |
|
85 |
| 0.8359 | 4.87 | 17000 | inf | 0.2172 |
|
86 |
|
87 |
+
Training continued with checkpoint from STEP 17000:
|
88 |
+
| / | 5.16 | 18000 | inf | 0.2176 |
|
89 |
+
| / | 5.45 | 19000 | inf | 0.2181 |
|
90 |
+
| / | 5.73 | 20000 | inf | 0.2155 |
|
91 |
+
| / | 6.02 | 21000 | inf | 0.2140 |
|
92 |
+
| / | 6.31 | 22000 | inf | 0.2124 |
|
93 |
+
| / | 6.59 | 23000 | inf | 0.2117 |
|
94 |
+
| / | 6.88 | 24000 | inf | 0.2116 |
|
95 |
+
|
96 |
+
|
97 |
+
It achieves the best result on the validation set on Step 24000:
|
98 |
+
- Wer: 0.2116
|
99 |
|
100 |
Got some issue with validation loss calculation.
|
101 |
|
eval.py
CHANGED
@@ -48,18 +48,15 @@ def log_results(result: Dataset, args: Dict[str, str]):
|
|
48 |
|
49 |
def normalize_text(text: str) -> str:
|
50 |
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
|
51 |
-
|
52 |
-
chars_to_ignore_regex = '[^a-zàâäçéèêëîïôöùûüÿ\'’ ]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
|
53 |
-
|
54 |
-
text = re.sub(chars_to_ignore_regex, "", text.lower()).replace('’', "'")
|
55 |
-
|
56 |
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
|
57 |
# note that order is important here!
|
58 |
token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
|
59 |
-
|
60 |
for t in token_sequences_to_ignore:
|
61 |
text = " ".join(text.split(t))
|
62 |
|
|
|
|
|
|
|
63 |
return text
|
64 |
|
65 |
|
@@ -68,7 +65,7 @@ def main(args):
|
|
68 |
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
69 |
|
70 |
# for testing: only process the first two examples as a test
|
71 |
-
|
72 |
|
73 |
# load processor
|
74 |
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
|
|
48 |
|
49 |
def normalize_text(text: str) -> str:
|
50 |
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
|
|
|
|
|
|
|
|
|
|
|
51 |
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
|
52 |
# note that order is important here!
|
53 |
token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
|
|
|
54 |
for t in token_sequences_to_ignore:
|
55 |
text = " ".join(text.split(t))
|
56 |
|
57 |
+
chars_to_ignore_regex = '[^a-zàâäçéèêëîïôöùûüÿ\'’ ]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
|
58 |
+
text = re.sub(chars_to_ignore_regex, "", text.lower()).replace('’', "'")
|
59 |
+
|
60 |
return text
|
61 |
|
62 |
|
|
|
65 |
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
66 |
|
67 |
# for testing: only process the first two examples as a test
|
68 |
+
# dataset = dataset.select(range(2))
|
69 |
|
70 |
# load processor
|
71 |
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
log_speech-recognition-community-v2_dev_data_fr_validation_predictions.txt
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
log_speech-recognition-community-v2_dev_data_fr_validation_targets.txt
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
speech-recognition-community-v2_dev_data_fr_validation_eval_results.txt
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
-
WER: 0.
|
2 |
-
CER: 0.
|
|
|
1 |
+
WER: 0.35289081159028435
|
2 |
+
CER: 0.1394068190984395
|