|
--- |
|
language: |
|
- fr |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- mozilla-foundation/common_voice_8_0 |
|
- generated_from_trainer |
|
- robust-speech-event |
|
model-index: |
|
- name: XLS-R-1B - French |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 8 |
|
type: mozilla-foundation/common_voice_8_0 |
|
args: fr |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: to recompute with STEP 24000 |
|
- name: Test CER |
|
type: cer |
|
value: to recompute with STEP 24000 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Dev Data |
|
type: speech-recognition-community-v2/dev_data |
|
args: fr |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 35.29 |
|
- name: Test CER |
|
type: cer |
|
value: 13.94 |
|
|
|
--- |
|
|
|
## Model description |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - FR dataset. |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 7.5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 2000 |
|
- num_epochs: 5.0 (extended to 7.0 with training with checkpoint) |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:| |
|
| 2.9114 | 0.29 | 1000 | inf | 0.9997 | |
|
| 1.2436 | 0.57 | 2000 | inf | 0.4310 | |
|
| 1.0552 | 0.86 | 3000 | inf | 0.3144 | |
|
| 1.0044 | 1.15 | 4000 | inf | 0.2814 | |
|
| 0.9718 | 1.43 | 5000 | inf | 0.2658 | |
|
| 0.9502 | 1.72 | 6000 | inf | 0.2566 | |
|
| 0.9418 | 2.01 | 7000 | inf | 0.2476 | |
|
| 0.9215 | 2.29 | 8000 | inf | 0.2420 | |
|
| 0.9236 | 2.58 | 9000 | inf | 0.2388 | |
|
| 0.9014 | 2.87 | 10000 | inf | 0.2354 | |
|
| 0.8814 | 3.15 | 11000 | inf | 0.2312 | |
|
| 0.8809 | 3.44 | 12000 | inf | 0.2285 | |
|
| 0.8717 | 3.73 | 13000 | inf | 0.2263 | |
|
| 0.8787 | 4.01 | 14000 | inf | 0.2218 | |
|
| 0.8567 | 4.3 | 15000 | inf | 0.2193 | |
|
| 0.8488 | 4.59 | 16000 | inf | 0.2187 | |
|
| 0.8359 | 4.87 | 17000 | inf | 0.2172 | |
|
|
|
Training continued with checkpoint from STEP 17000: |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:| |
|
| / | 5.16 | 18000 | inf | 0.2176 | |
|
| / | 5.45 | 19000 | inf | 0.2181 | |
|
| / | 5.73 | 20000 | inf | 0.2155 | |
|
| / | 6.02 | 21000 | inf | 0.2140 | |
|
| / | 6.31 | 22000 | inf | 0.2124 | |
|
| / | 6.59 | 23000 | inf | 0.2117 | |
|
| / | 6.88 | 24000 | inf | 0.2116 | |
|
|
|
|
|
It achieves the best result on the validation set on Step 24000: |
|
- Wer: 0.2116 |
|
|
|
Got some issue with validation loss calculation. |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0.dev0 |
|
- Pytorch 1.10.2+cu102 |
|
- Datasets 1.18.3.dev0 |
|
- Tokenizers 0.11.0 |
|
|
|
### Evaluation Commands |
|
1. To evaluate on `mozilla-foundation/common_voice_8` with split `test` |
|
|
|
```bash |
|
python eval.py --model_id Plim/xls-r-300m-cv_8-fr --dataset mozilla-foundation/common_voice_8_0 --config fr --split test |
|
``` |
|
|
|
2. To evaluate on `speech-recognition-community-v2/dev_data` |
|
|
|
```bash |
|
python eval.py --model_id Plim/xls-r-300m-cv_8-fr --dataset speech-recognition-community-v2/dev_data --config fr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 |
|
``` |
|
|