gonzalez-agirre's picture
Update README.md
  - es
license: apache-2.0
  - national library of spain
  - spanish
  - bne
  - capitel
  - pos
  - bne
  - capitel
  - f1
    aggregation_strategy: first
  - name: roberta-base-bne-capiter-pos
      - task:
          type: token-classification
          type: pos
          name: CAPITEL-POS
          - name: F1
            type: f1
            value: 0.9846
  - text: >-
      Festival de San Sebastián: Johnny Depp recibirá el premio Donostia en
      pleno rifirrafe judicial con Amber Heard
  - text: >-
      El alcalde de Vigo, Abel Caballero, ha comenzado a colocar las luces de
      Navidad en agosto.
  - text: >-
      Gracias a los datos de la BNE, se ha podido lograr este modelo del

Spanish RoBERTa-base trained on BNE finetuned for CAPITEL Part of Speech (POS) dataset

Table of contents

Click to expand

Model description

The roberta-base-bne-capitel-pos is a Part-of-speech-tagging (POS) model for the Spanish language fine-tuned from the roberta-base-bne model, a RoBERTa base model pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text, processed for this work, compiled from the web crawlings performed by the National Library of Spain (Biblioteca Nacional de España) from 2009 to 2019.

Intended uses and limitations

roberta-base-bne-capitel-pos model can be used to Part-of-speech-tagging (POS) a text. The model is limited by its training dataset and may not generalize well for all use cases.

How to use

Here is how to use this model:

from transformers import pipeline
from pprint import pprint

nlp = pipeline("token-classification", model="PlanTL-GOB-ES/roberta-base-bne-capitel-pos")
example = "El alcalde de Vigo, Abel Caballero, ha comenzado a colocar las luces de Navidad en agosto."

pos_results = nlp(example)

Limitations and bias

At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.


The dataset used is the one from the CAPITEL competition at IberLEF 2020 (sub-task 2).

Training procedure

The model was trained with a batch size of 32 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.


Variable and metrics

This model was finetuned maximizing F1 score.

Evaluation results

We evaluated the roberta-base-bne-capitel-pos on the CAPITEL-POS test set against standard multilingual and monolingual baselines:

roberta-large-bne-capitel-pos 98.56
roberta-base-bne-capitel-pos 98.46
BETO 98.36
mBERT 98.39
BERTIN 98.47

For more details, check the fine-tuning and evaluation scripts in the official GitHub repository.

Additional information


Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es)

Contact information

For further information, send an email to plantl-gob-es@bsc.es


Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022)

Licensing information

Apache License, Version 2.0


This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL.

Citing information

If you use this model, please cite our paper:

   abstract = {We want to thank the National Library of Spain for such a large effort on the data gathering and the Future of Computing Center, a
Barcelona Supercomputing Center and IBM initiative (2020). This work was funded by the Spanish State Secretariat for Digitalization and Artificial
Intelligence (SEDIA) within the framework of the Plan-TL.},
   author = {Asier Gutiérrez Fandiño and Jordi Armengol Estapé and Marc Pàmies and Joan Llop Palao and Joaquin Silveira Ocampo and Casimiro Pio Carrino and Carme Armentano Oller and Carlos Rodriguez Penagos and Aitor Gonzalez Agirre and Marta Villegas},
   doi = {10.26342/2022-68-3},
   issn = {1135-5948},
   journal = {Procesamiento del Lenguaje Natural},
   keywords = {Artificial intelligence,Benchmarking,Data processing.,MarIA,Natural language processing,Spanish language modelling,Spanish language resources,Tractament del llenguatge natural (Informàtica),Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Llenguatge natural},
   publisher = {Sociedad Española para el Procesamiento del Lenguaje Natural},
   title = {MarIA: Spanish Language Models},
   volume = {68},
   url = {https://upcommons.upc.edu/handle/2117/367156#.YyMTB4X9A-0.mendeley},
   year = {2022},


The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions.

When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of artificial intelligence.

In no event shall the owner of the models (SEDIA – State Secretariat for digitalization and artificial intelligence) nor the creator (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.

Los modelos publicados en este repositorio tienen una finalidad generalista y están a disposición de terceros. Estos modelos pueden tener sesgos y/u otro tipo de distorsiones indeseables.

Cuando terceros desplieguen o proporcionen sistemas y/o servicios a otras partes usando alguno de estos modelos (o utilizando sistemas basados en estos modelos) o se conviertan en usuarios de los modelos, deben tener en cuenta que es su responsabilidad mitigar los riesgos derivados de su uso y, en todo caso, cumplir con la normativa aplicable, incluyendo la normativa en materia de uso de inteligencia artificial.

En ningún caso el propietario de los modelos (SEDIA – Secretaría de Estado de Digitalización e Inteligencia Artificial) ni el creador (BSC – Barcelona Supercomputing Center) serán responsables de los resultados derivados del uso que hagan terceros de estos modelos.