Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- PipableAI/pip-txt-to-sql-spider-bird-dataset
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
tags:
|
10 |
+
- sql
|
11 |
+
- code
|
12 |
+
- text2sql
|
13 |
+
- instruction_tuned
|
14 |
+
- basemodel
|
15 |
+
- jax
|
16 |
+
- pytorch
|
17 |
+
- tensorflow
|
18 |
+
- text-generation-inference
|
19 |
+
library_name: transformers
|
20 |
+
pipeline_tag: text-generation
|
21 |
+
---
|
22 |
+
# pipSQL-1.3b
|
23 |
+
[pipableAi](https://www.linkedin.com/company/pipable.ai/about/)
|
24 |
+
|
25 |
+
## What have we built?
|
26 |
+
A 1.3 bn SQL model that outperforms most SQL expert models and chatgpt on popular benchmarks.
|
27 |
+
This is a distilled model built on the deepseek base model.
|
28 |
+
|
29 |
+
## How we built it?
|
30 |
+
|
31 |
+
We used softmax cross entropy and a modified form of policy grad along with Q loss, optimized in an EM set up.
|
32 |
+
|
33 |
+
## Benchmarking :
|
34 |
+
For benchmarking purposes we are using Semantic Evaluation for Text-to-SQL with
|
35 |
+
Distilled Test Suites, an officially accepted evaluation framework for Spider, SParC, and CoSQL which was proposed by a research team of Yale and Berkeley.
|
36 |
+
The benchmark contains 2200 test data points
|
37 |
+
Here is the link to run the evaluation:
|
38 |
+
|
39 |
+
|
40 |
+
[Test Suite SQL Eval](https://github.com/taoyds/test-suite-sql-eval)
|
41 |
+
|
42 |
+
|model|easy|medium|hard|extra|
|
43 |
+
|-----|----|------|----|-----|
|
44 |
+
|sqlcoder-7b-2|72.0|58.0|40.6|37.3|
|
45 |
+
|pip-sql-1b-Qstar|74.0|54.0|36.5|30.0|
|
46 |
+
|pipSQL-7b|63.0|40.0|30.2|25.0|
|
47 |
+
|sqlcoder-7b|60.6|48.2|28.3|20.4|
|
48 |
+
|gpt-3.5|58.8|44.7|31.0|28.4|
|
49 |
+
|
50 |
+
We have also benchmarked it on defog eval.
|
51 |
+
It contains 200 test data points handpicked by defog team.
|
52 |
+
Here is the link to it:
|
53 |
+
|
54 |
+
|
55 |
+
[Defog SQL-Eval](https://github.com/defog-ai/sql-eval)
|
56 |
+
These are the results -
|
57 |
+
|
58 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d32c6b921678fdc9de3302/ZU_YeKLEtHg7ImXI5LrXo.png)
|
59 |
+
|
60 |
+
## License
|
61 |
+
The model is open source under apache 2.0. License
|
62 |
+
|
63 |
+
## Usage
|
64 |
+
|
65 |
+
### Installation
|
66 |
+
|
67 |
+
```bash
|
68 |
+
pip install transformers
|
69 |
+
```
|
70 |
+
|
71 |
+
### Prompt
|
72 |
+
```python
|
73 |
+
prompt = f"""<schema>{schema}</schema>
|
74 |
+
<question>{question}</question>
|
75 |
+
<sql>"""
|
76 |
+
```
|
77 |
+
|
78 |
+
### PyTorch
|
79 |
+
```python
|
80 |
+
from transformers import AutoModelForCasualLM, AutoTokenizer
|
81 |
+
device = "cuda"
|
82 |
+
model = AutoModelForCausalLM.from_pretrained("PipableAI/pipSQL-1.3b")
|
83 |
+
tokenizer = AutoTokenizer.from_pretrained("PipableAI/pipSQL-1.3b")
|
84 |
+
|
85 |
+
inputs = tokenizer(text, return_tensors="pt")
|
86 |
+
outputs = model.generate(**inputs, max_new_tokens=200)
|
87 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True).split('<sql>')[1].split('</sql>')[0])
|
88 |
+
```
|
89 |
+
|
90 |
+
### Flax
|
91 |
+
```python
|
92 |
+
from transfomers import FlaxAutoModelForCausalLM, AutoTokenizer
|
93 |
+
device = "cuda"
|
94 |
+
model = FlaxAutoModelForCausalLM.from_pretrained("PipableAI/pipSQL-1.3b")
|
95 |
+
tokenizer = AutoTokenizer.from_pretrained("PipableAI/pipSQL-1.3b")
|
96 |
+
|
97 |
+
inputs = tokenizer(text, return_tensors="pt")
|
98 |
+
outputs = model.generate(**inputs, max_new_tokens=200)
|
99 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True).split('<sql>')[1].split('</sql>')[0])
|
100 |
+
```
|
101 |
+
|
102 |
+
### TensorFlow
|
103 |
+
```python
|
104 |
+
from transfomers import TFAutoModelForCausalLM, AutoTokenizer
|
105 |
+
device = "cuda"
|
106 |
+
model = TFAutoModelForCausalLM.from_pretrained("PipableAI/pipSQL-1.3b")
|
107 |
+
tokenizer = AutoTokenizer.from_pretrained("PipableAI/pipSQL-1.3b")
|
108 |
+
|
109 |
+
inputs = tokenizer(text, return_tensors="pt")
|
110 |
+
outputs = model.generate(**inputs, max_new_tokens=200)
|
111 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True).split('<sql>')[1].split('</sql>')[0])
|
112 |
+
```
|