Update README.md
Browse files
README.md
CHANGED
@@ -1,205 +1,193 @@
|
|
1 |
-
|
2 |
-
library_name: transformers
|
3 |
-
tags: []
|
4 |
-
widget:
|
5 |
-
- text: >-
|
6 |
-
Hi Im pip_bot , I can document code , write sql and do other etl related work. All you have to give me are a few examples.
|
7 |
-
example_title: example
|
8 |
-
---
|
9 |
|
10 |
-
|
11 |
|
12 |
-
|
13 |
|
|
|
14 |
|
|
|
|
|
|
|
15 |
|
16 |
-
##
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
<!-- Provide a longer summary of what this model is. -->
|
21 |
-
|
22 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
23 |
-
|
24 |
-
- **Developed by:** [More Information Needed]
|
25 |
-
- **Funded by [optional]:** [More Information Needed]
|
26 |
-
- **Shared by [optional]:** [More Information Needed]
|
27 |
-
- **Model type:** [More Information Needed]
|
28 |
-
- **Language(s) (NLP):** [More Information Needed]
|
29 |
-
- **License:** [More Information Needed]
|
30 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
31 |
-
|
32 |
-
### Model Sources [optional]
|
33 |
-
|
34 |
-
<!-- Provide the basic links for the model. -->
|
35 |
-
|
36 |
-
- **Repository:** [More Information Needed]
|
37 |
-
- **Paper [optional]:** [More Information Needed]
|
38 |
-
- **Demo [optional]:** [More Information Needed]
|
39 |
-
|
40 |
-
## Uses
|
41 |
-
|
42 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
43 |
-
|
44 |
-
### Direct Use
|
45 |
-
|
46 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
47 |
-
|
48 |
-
[More Information Needed]
|
49 |
-
|
50 |
-
### Downstream Use [optional]
|
51 |
-
|
52 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
53 |
-
|
54 |
-
[More Information Needed]
|
55 |
-
|
56 |
-
### Out-of-Scope Use
|
57 |
-
|
58 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
59 |
-
|
60 |
-
[More Information Needed]
|
61 |
-
|
62 |
-
## Bias, Risks, and Limitations
|
63 |
-
|
64 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
65 |
-
|
66 |
-
[More Information Needed]
|
67 |
-
|
68 |
-
### Recommendations
|
69 |
-
|
70 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
71 |
-
|
72 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
73 |
-
|
74 |
-
## How to Get Started with the Model
|
75 |
-
|
76 |
-
Use the code below to get started with the model.
|
77 |
-
|
78 |
-
[More Information Needed]
|
79 |
-
|
80 |
-
## Training Details
|
81 |
-
|
82 |
-
### Training Data
|
83 |
-
|
84 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
85 |
-
|
86 |
-
[More Information Needed]
|
87 |
-
|
88 |
-
### Training Procedure
|
89 |
-
|
90 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
91 |
-
|
92 |
-
#### Preprocessing [optional]
|
93 |
-
|
94 |
-
[More Information Needed]
|
95 |
-
|
96 |
-
|
97 |
-
#### Training Hyperparameters
|
98 |
-
|
99 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
100 |
-
|
101 |
-
#### Speeds, Sizes, Times [optional]
|
102 |
-
|
103 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
104 |
-
|
105 |
-
[More Information Needed]
|
106 |
-
|
107 |
-
## Evaluation
|
108 |
-
|
109 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
110 |
-
|
111 |
-
### Testing Data, Factors & Metrics
|
112 |
-
|
113 |
-
#### Testing Data
|
114 |
-
|
115 |
-
<!-- This should link to a Dataset Card if possible. -->
|
116 |
-
|
117 |
-
[More Information Needed]
|
118 |
-
|
119 |
-
#### Factors
|
120 |
-
|
121 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
122 |
-
|
123 |
-
[More Information Needed]
|
124 |
-
|
125 |
-
#### Metrics
|
126 |
-
|
127 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
### Results
|
132 |
-
|
133 |
-
[More Information Needed]
|
134 |
-
|
135 |
-
#### Summary
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
## Model Examination [optional]
|
140 |
-
|
141 |
-
<!-- Relevant interpretability work for the model goes here -->
|
142 |
-
|
143 |
-
[More Information Needed]
|
144 |
-
|
145 |
-
## Environmental Impact
|
146 |
-
|
147 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
148 |
-
|
149 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
150 |
-
|
151 |
-
- **Hardware Type:** [More Information Needed]
|
152 |
-
- **Hours used:** [More Information Needed]
|
153 |
-
- **Cloud Provider:** [More Information Needed]
|
154 |
-
- **Compute Region:** [More Information Needed]
|
155 |
-
- **Carbon Emitted:** [More Information Needed]
|
156 |
-
|
157 |
-
## Technical Specifications [optional]
|
158 |
-
|
159 |
-
### Model Architecture and Objective
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
### Compute Infrastructure
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Hardware
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
#### Software
|
172 |
-
|
173 |
-
[More Information Needed]
|
174 |
-
|
175 |
-
## Citation [optional]
|
176 |
-
|
177 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
178 |
-
|
179 |
-
**BibTeX:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
**APA:**
|
184 |
-
|
185 |
-
[More Information Needed]
|
186 |
-
|
187 |
-
## Glossary [optional]
|
188 |
-
|
189 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## More Information [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Authors [optional]
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
## Model Card Contact
|
202 |
-
|
203 |
-
[More Information Needed]
|
204 |
|
|
|
205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pip-code-to-doc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
[pipableAi](https://www.linkedin.com/company/pipable.ai/about/)
|
4 |
|
5 |
+
[colab_notebook](https://colab.research.google.com/drive/17PyMU_3QN9LROy7x-jmaema0cuLRzBvc?usp=sharing)
|
6 |
|
7 |
+
## What have we built?
|
8 |
|
9 |
+
A 1.3 bn code documentation model that outperforms most models on documenting codes and making your in-house libs ready for LLM and RAG pipelines.
|
10 |
+
We have also open sourced a [parsing lib](https://github.com/PipableAI/pip-library-parser) for the same, together the lib and model can turn your codebase to functional parse tree ready to be consumed by LLMs to execute complex tasks.
|
11 |
+
This is a further trained version of pip-sql-1.3b.
|
12 |
|
13 |
+
## How we built it?
|
14 |
|
15 |
+
We used softmax cross entropy and a modified form of policy grad along with Q loss, optimized in an EM set up.
|
16 |
+
Loss behaviour in the set up mentioned above -
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
## License
|
19 |
|
20 |
+
The model is open source under apache 2.0. License
|
21 |
+
|
22 |
+
## Usage
|
23 |
+
|
24 |
+
|
25 |
+
### Library use
|
26 |
+
```python
|
27 |
+
!pip3 install git+https://github.com/PipableAI/pip-library-parser
|
28 |
+
!pip3 install atlassian-python-api
|
29 |
+
|
30 |
+
|
31 |
+
from pip_library_parser import CodeToDocGenerator
|
32 |
+
from atlassian import Jira
|
33 |
+
|
34 |
+
import torch
|
35 |
+
torch.set_default_device("cuda")
|
36 |
+
|
37 |
+
# Instantiate the CodeToDocGenerator
|
38 |
+
generator = CodeToDocGenerator()
|
39 |
+
|
40 |
+
# Generate docstrings for the module's functions and methods
|
41 |
+
module = Jira
|
42 |
+
module_name = "atlassian.Jira"
|
43 |
+
|
44 |
+
docs = generator.generate_module_docs(module, module_name)
|
45 |
+
print(docs)
|
46 |
+
```
|
47 |
+
|
48 |
+
```python
|
49 |
+
from pip_library_parser import CodeToDocGenerator
|
50 |
+
|
51 |
+
# Instantiate the CodeToDocGenerator
|
52 |
+
generator = CodeToDocGenerator()
|
53 |
+
|
54 |
+
code_snippet = """
|
55 |
+
def example_function(x):
|
56 |
+
return x * 2
|
57 |
+
"""
|
58 |
+
|
59 |
+
docstring = generator.generate_docstring_from_pip_model(code_snippet)
|
60 |
+
print("Generated Docstring:")
|
61 |
+
print(docstring)
|
62 |
+
```
|
63 |
+
|
64 |
+
### Installation
|
65 |
+
|
66 |
+
```bash
|
67 |
+
pip install transformers
|
68 |
+
```
|
69 |
+
|
70 |
+
### Prompt
|
71 |
+
```python
|
72 |
+
prompt = f"""<function_code>{code}</function_code>
|
73 |
+
<question>Give one line description of the python code above in natural language.</question>
|
74 |
+
<doc>"""
|
75 |
+
```
|
76 |
+
|
77 |
+
### PyTorch
|
78 |
+
```python
|
79 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
80 |
+
device = "cuda"
|
81 |
+
model = AutoModelForCausalLM.from_pretrained("PipableAI/pip-code-to-doc-1.3b").to(device)
|
82 |
+
tokenizer = AutoTokenizer.from_pretrained("PipableAI/pip-code-to-doc-1.3b")
|
83 |
+
prompt = f"""
|
84 |
+
<function_code>
|
85 |
+
def example_function(x):
|
86 |
+
return x * 2
|
87 |
+
</function_code>
|
88 |
+
<question>Give one line description of the python code above in natural language.</question>
|
89 |
+
<doc>"""
|
90 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
91 |
+
outputs = model.generate(**inputs, max_new_tokens=300)
|
92 |
+
tokenizer.decode(outputs[0], skip_special_tokens=True).split('<doc>')[-1].split('</doc>')[0]
|
93 |
+
```
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
## Examples
|
98 |
+
|
99 |
+
### prompt
|
100 |
+
```python
|
101 |
+
<function_code>
|
102 |
+
###########################
|
103 |
+
# Generate Analytical Model
|
104 |
+
###########################
|
105 |
+
##################################################
|
106 |
+
# func: get_np_array_transition_probability_matrix
|
107 |
+
##################################################
|
108 |
+
def get_np_array_transition_probability_matrix(int_num_states, np_array_A_matrix):
|
109 |
+
print('np_array_A_matrix:')
|
110 |
+
print(np_array_A_matrix)
|
111 |
+
#####################################################
|
112 |
+
# Perturb the adjacency matrix to avoid singularities
|
113 |
+
#####################################################
|
114 |
+
np_array_A_matrix += (np.full((int_num_states, int_num_states), float_eps) - (np.identity(int_num_states) * float_eps))
|
115 |
+
print('np_array_A_matrix:')
|
116 |
+
print(np_array_A_matrix)
|
117 |
+
print('np_array_D_matrix:')
|
118 |
+
np_array_D_matrix = np.diag(np.sum(np_array_A_matrix, axis=1))
|
119 |
+
print(np_array_D_matrix)
|
120 |
+
print('np_array_D_matrix_inv:')
|
121 |
+
np_array_D_matrix_inv = np.linalg.inv(np_array_D_matrix)
|
122 |
+
print(np_array_D_matrix_inv)
|
123 |
+
print('\n\n')
|
124 |
+
print('np_array_P_matrix:')
|
125 |
+
np_array_P_matrix = np.dot(np_array_D_matrix_inv, np_array_A_matrix)
|
126 |
+
print(np_array_P_matrix)
|
127 |
+
print('np.sum(np_array_P_matrix, axis=1):')
|
128 |
+
print(np.sum(np_array_P_matrix, axis=1))
|
129 |
+
print('\n\n')
|
130 |
+
return np_array_P_matrix
|
131 |
+
##################################################
|
132 |
+
# func: get_np_array_perron_frobenius_eigen_vector
|
133 |
+
##################################################
|
134 |
+
def get_np_array_perron_frobenius_matrix(int_num_states, np_array_P_matrix):
|
135 |
+
np_array_perron_frobenius_matrix = np.linalg.matrix_power(np_array_P_matrix,1000)
|
136 |
+
np_array_perron_frobenius_vector = np_array_perron_frobenius_matrix[0,:]
|
137 |
+
print('np_array_perron_frobenius_matrix:')
|
138 |
+
print(np_array_perron_frobenius_matrix)
|
139 |
+
print('np.sum(np_array_perron_frobenius_matrix, axis=1):')
|
140 |
+
print(np.sum(np_array_perron_frobenius_matrix, axis=1))
|
141 |
+
print('np.sum(np_array_perron_frobenius_matrix, axis=0):')
|
142 |
+
print(np.sum(np_array_perron_frobenius_matrix, axis=0))
|
143 |
+
print('np.sum(np_array_perron_frobenius_matrix, axis=0)/int_num_states:')
|
144 |
+
print(np.sum(np_array_perron_frobenius_matrix, axis=0)/int_num_states)
|
145 |
+
print('np.dot(np_array_perron_frobenius_vector, np_array_P_matrix):')
|
146 |
+
print(np.dot(np_array_perron_frobenius_vector, np_array_P_matrix))
|
147 |
+
print('np_array_perron_frobenius_vector:')
|
148 |
+
print(np_array_perron_frobenius_vector)
|
149 |
+
print('\n\n')
|
150 |
+
return np_array_perron_frobenius_vector, np_array_perron_frobenius_matrix
|
151 |
+
#############################
|
152 |
+
# func: get_np_array_Z_matrix
|
153 |
+
#############################
|
154 |
+
def get_np_array_Z_matrix(int_num_states, np_array_P_matrix, np_array_perron_frobenius_matrix):
|
155 |
+
np_array_Z_matrix = np.linalg.inv(np.identity(int_num_states) - np_array_P_matrix + np_array_perron_frobenius_matrix)
|
156 |
+
print('np_array_Z_matrix:')
|
157 |
+
print(np_array_Z_matrix)
|
158 |
+
print('\n\n')
|
159 |
+
return(np_array_Z_matrix)
|
160 |
+
#############################
|
161 |
+
# func: get_np_array_H_matrix
|
162 |
+
#############################
|
163 |
+
def get_np_array_H_matrix(int_num_states, np_array_Z_matrix, np_array_perron_frobenius_vector):
|
164 |
+
np_array_H_matrix = np.zeros([int_num_states, int_num_states])
|
165 |
+
for i in range(int_num_states):
|
166 |
+
for j in range(int_num_states):
|
167 |
+
np_array_H_matrix[i][j] = (np_array_Z_matrix[j][j] - np_array_Z_matrix[i][j])/np_array_perron_frobenius_vector[j]
|
168 |
+
print('np_array_H_matrix:')
|
169 |
+
print(np_array_H_matrix)
|
170 |
+
print('\n\n')
|
171 |
+
return np_array_H_matrix
|
172 |
+
###########
|
173 |
+
# func: run
|
174 |
+
###########
|
175 |
+
def run(np_array_A_matrix):
|
176 |
+
int_num_states = len(np_array_A_matrix)
|
177 |
+
np_array_P_matrix = get_np_array_transition_probability_matrix(int_num_states, np_array_A_matrix)
|
178 |
+
np_array_perron_frobenius_vector, np_array_perron_frobenius_matrix = get_np_array_perron_frobenius_matrix(int_num_states, np_array_P_matrix)
|
179 |
+
np_array_Z_matrix = get_np_array_Z_matrix(int_num_states, np_array_P_matrix, np_array_perron_frobenius_matrix)
|
180 |
+
np_array_H_matrix = get_np_array_H_matrix(int_num_states, np_array_Z_matrix, np_array_perron_frobenius_vector)
|
181 |
+
return(np_array_H_matrix)
|
182 |
+
</function_code>
|
183 |
+
<question>Give one line description of the python code above in natural language.</question>
|
184 |
+
<doc>
|
185 |
+
```
|
186 |
+
|
187 |
+
### Response
|
188 |
+
```txt
|
189 |
+
The given python code is a function that calculates the transition probability matrix, P, for a given adjacency matrix A, and then uses these matrices to calculate the Perron-Frobenius eigenvector and its inverse matrix Z, and finally, the H matrix which is the inverse of the Z matrix. The H matrix is then returned as the output of the function. The adjacency matrix A is a square matrix where each element at position (i, j) represents the probability of transitioning from state i to state j. The function first perturbs the adjacency matrix to avoid singularities, then calculates the transition probability matrix P, the Perron-Frobenius eigenvector and its inverse matrix Z, and finally, the H matrix. The H matrix is then returned as the output of the function.
|
190 |
+
```
|
191 |
+
|
192 |
+
### Team
|
193 |
+
Avi Kothari, Gyan Ranjan, Pratham Gupta, Ritvik Aryan Kalra, Soham Acharya
|