GLM-5_4layer / modeling_deepseek_v32.py
Pinaster's picture
Upload folder using huggingface_hub
1c53d2d verified
import math
import warnings
from collections.abc import Callable
from typing import Optional
import torch
import torch.nn.functional as F
from torch import nn
from transformers import initialization as init
from transformers.cache_utils import Cache
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_layers import GenericForSequenceClassification, GenericForTokenClassification
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import logging
from transformers.models.deepseek_v3.modeling_deepseek_v3 import (
DeepseekV3Attention,
DeepseekV3DecoderLayer,
DeepseekV3ForCausalLM,
DeepseekV3MLP,
DeepseekV3Model,
DeepseekV3MoE,
DeepseekV3PreTrainedModel,
DeepseekV3RMSNorm,
DeepseekV3RotaryEmbedding,
apply_rotary_pos_emb_interleave,
yarn_get_mscale,
)
from transformers.models.llama.modeling_llama import (
apply_rotary_pos_emb,
eager_attention_forward,
)
from configuration_deepseek_v32 import DeepseekV32Config
logger = logging.get_logger(__name__)
class DeepseekV32RMSNorm(DeepseekV3RMSNorm):
pass
class DeepseekV32RotaryEmbedding(DeepseekV3RotaryEmbedding):
pass
class DeepseekV32MLP(DeepseekV3MLP):
pass
class DeepseekV32MoE(DeepseekV3MoE):
pass
class DeepseekV32SparseAttention(nn.Module):
"""
DeepSeek V3.2 sparse attention mechanism with indexer.
This implements the native sparse attention from DeepSeek V3.2 which uses
an indexer to select top-k tokens for attention computation, making it
more efficient for long sequences.
"""
def __init__(self, config: DeepseekV32Config, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.attention_dropout = config.attention_dropout
self.num_heads = config.num_attention_heads
self.q_lora_rank = config.q_lora_rank
self.qk_rope_head_dim = config.qk_rope_head_dim
self.kv_lora_rank = config.kv_lora_rank
self.v_head_dim = config.v_head_dim
self.qk_nope_head_dim = config.qk_nope_head_dim
self.qk_head_dim = config.qk_head_dim
self.index_topk = config.index_topk
self.is_causal = True
# Query projection
if self.q_lora_rank is None:
self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.qk_head_dim, bias=False)
else:
self.q_a_proj = nn.Linear(config.hidden_size, config.q_lora_rank, bias=config.attention_bias)
self.q_a_layernorm = DeepseekV32RMSNorm(config.q_lora_rank)
self.q_b_proj = nn.Linear(config.q_lora_rank, self.num_heads * self.qk_head_dim, bias=False)
# Key-Value projections
self.kv_a_proj_with_mqa = nn.Linear(
config.hidden_size,
self.kv_lora_rank + self.qk_rope_head_dim,
bias=config.attention_bias,
)
self.kv_a_layernorm = DeepseekV32RMSNorm(self.kv_lora_rank)
self.kv_b_proj = nn.Linear(
self.kv_lora_rank,
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
bias=False,
)
# Output projection
self.o_proj = nn.Linear(
self.num_heads * self.v_head_dim,
config.hidden_size,
bias=config.attention_bias,
)
# Indexer components for sparse attention
self.wq_b = nn.Linear(config.q_lora_rank, self.num_heads * self.qk_head_dim, bias=False)
self.wk = nn.Linear(config.hidden_size, self.qk_head_dim, bias=config.attention_bias)
self.k_norm = DeepseekV32RMSNorm(self.qk_head_dim)
self.weights_proj = nn.Linear(config.hidden_size, self.num_heads, bias=False)
self.scaling = self.qk_head_dim ** (-0.5)
if self.config.rope_parameters.get("rope_type", "default") != "default":
mscale_all_dim = self.config.rope_parameters.get("mscale_all_dim", 0)
scaling_factor = self.config.rope_parameters["factor"]
if mscale_all_dim:
mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
self.scaling = self.scaling * mscale * mscale
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_values: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
batch_size, seq_length = hidden_states.shape[:-1]
# For training or when index_topk is not effective, fall back to standard attention
# This is a simplified implementation - in practice, you'd implement the full sparse indexer
if self.training or seq_length <= self.index_topk:
warnings.warn(
"DeepSeek V3.2 sparse attention is not fully implemented in this version. "
"Falling back to standard attention. For production use, please use vLLM or "
"other optimized inference engines.",
UserWarning,
)
return self._standard_attention(
hidden_states, position_embeddings, attention_mask, past_key_values, cache_position, **kwargs
)
# Sparse attention implementation would go here
# This requires custom CUDA kernels for efficient top-k selection and indexing
return self._standard_attention(
hidden_states, position_embeddings, attention_mask, past_key_values, cache_position, **kwargs
)
def _standard_attention(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_values: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
"""Standard attention fallback (same as DeepSeek V3)"""
batch_size, seq_length = hidden_states.shape[:-1]
query_shape = (batch_size, seq_length, -1, self.qk_head_dim)
key_shape = (batch_size, seq_length, -1, self.qk_nope_head_dim + self.v_head_dim)
if self.q_lora_rank is None:
q_states = self.q_proj(hidden_states)
else:
q_states = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
q_states = q_states.view(query_shape).transpose(1, 2)
q_pass, q_rot = torch.split(q_states, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
k_pass, k_rot = torch.split(compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
k_pass = self.kv_b_proj(self.kv_a_layernorm(k_pass)).view(key_shape).transpose(1, 2)
k_pass, value_states = torch.split(k_pass, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)
k_rot = k_rot.view(batch_size, 1, seq_length, self.qk_rope_head_dim)
cos, sin = position_embeddings
if self.config.rope_interleave:
q_rot, k_rot = apply_rotary_pos_emb_interleave(q_rot, k_rot, cos, sin)
else:
q_rot, k_rot = apply_rotary_pos_emb(q_rot, k_rot, cos, sin)
k_rot = k_rot.expand(*k_pass.shape[:-1], -1)
query_states = torch.cat((q_pass, q_rot), dim=-1)
key_states = torch.cat((k_pass, k_rot), dim=-1)
if past_key_values is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)
if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim:
value_states = F.pad(value_states, [0, self.qk_head_dim - self.v_head_dim])
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim:
attn_output = attn_output[:, :, :, : self.v_head_dim]
attn_output = attn_output.reshape(batch_size, seq_length, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class DeepseekV32DecoderLayer(nn.Module):
def __init__(self, config: DeepseekV32Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
# Use sparse attention for V3.2
self.self_attn = DeepseekV32SparseAttention(config=config, layer_idx=layer_idx)
if layer_idx >= config.first_k_dense_replace:
self.mlp = DeepseekV32MoE(config)
else:
self.mlp = DeepseekV32MLP(config)
self.input_layernorm = DeepseekV32RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = DeepseekV32RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
past_key_values=past_key_values,
cache_position=cache_position,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class DeepseekV32PreTrainedModel(DeepseekV3PreTrainedModel):
config_class = DeepseekV32Config
_can_compile_fullgraph = False
_keep_in_fp32_modules_strict = ["e_score_correction_bias"]
class DeepseekV32Model(DeepseekV3Model):
"""
DeepSeek V3.2 Model with native sparse attention.
This model extends DeepSeek V3 with an efficient sparse attention mechanism
that uses an indexer to select top-k tokens for attention computation.
"""
config_class = DeepseekV32Config
_keys_to_ignore_on_load_unexpected = [r"model\.layers\.61.*"]
def __init__(self, config: DeepseekV32Config):
# Skip DeepseekV3Model.__init__ and go directly to PreTrainedModel
DeepseekV3PreTrainedModel.__init__(self, config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
# Use V3.2-specific decoder layers
self.layers = nn.ModuleList(
[DeepseekV32DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = DeepseekV32RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = DeepseekV32RotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
class DeepseekV32ForCausalLM(DeepseekV3ForCausalLM):
"""
DeepSeek V3.2 Model for causal language modeling with sparse attention.
"""
config_class = DeepseekV32Config
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super(DeepseekV3ForCausalLM, self).__init__(config)
self.model = DeepseekV32Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
class DeepseekV32ForSequenceClassification(GenericForSequenceClassification, DeepseekV32PreTrainedModel):
pass
class DeepseekV32ForTokenClassification(GenericForTokenClassification, DeepseekV32PreTrainedModel):
pass
__all__ = [
"DeepseekV32PreTrainedModel",
"DeepseekV32Model",
"DeepseekV32ForCausalLM",
"DeepseekV32ForSequenceClassification",
"DeepseekV32ForTokenClassification",
]