Llama3-q4_k_m / README.md
PiGrieco's picture
PiGrieco/Llama3-q4_k_m
387a0ff verified
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: Llama3-q4_k_m
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Llama3-q4_k_m
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0938
- Accuracy: 0.9825
- F1: 0.9827
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.3823 | 1.0 | 129 | 0.1932 | 0.9532 | 0.9535 |
| 0.1585 | 2.0 | 258 | 0.3872 | 0.8977 | 0.9057 |
| 0.3048 | 3.0 | 387 | 0.1816 | 0.9474 | 0.9477 |
| 0.2353 | 4.0 | 516 | 0.1817 | 0.9591 | 0.9605 |
| 0.2928 | 5.0 | 645 | 0.2058 | 0.9503 | 0.9524 |
| 0.2452 | 6.0 | 774 | 0.1246 | 0.9737 | 0.9742 |
| 0.348 | 7.0 | 903 | 0.0932 | 0.9825 | 0.9827 |
| 0.1316 | 8.0 | 1032 | 0.0938 | 0.9825 | 0.9827 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1