Perfect7613's picture
End of training
377d4f9 verified
metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: modernbert-phishing-classifier
    results: []

modernbert-phishing-classifier

This model is a fine-tuned version of answerdotai/ModernBERT-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3066
  • Accuracy: 0.9
  • Auc: 0.965

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Auc
0.3714 1.0 263 0.2936 0.869 0.949
0.2622 2.0 526 0.2681 0.884 0.96
0.2405 3.0 789 0.2642 0.898 0.961
0.2091 4.0 1052 0.2688 0.893 0.963
0.2078 5.0 1315 0.3813 0.882 0.962
0.1887 6.0 1578 0.2667 0.9 0.965
0.1695 7.0 1841 0.2851 0.902 0.964
0.1654 8.0 2104 0.2935 0.902 0.964
0.157 9.0 2367 0.3169 0.904 0.966
0.158 10.0 2630 0.3190 0.896 0.964
0.149 11.0 2893 0.3019 0.893 0.965
0.1437 12.0 3156 0.2995 0.9 0.965
0.1365 13.0 3419 0.3048 0.9 0.965
0.1312 14.0 3682 0.3090 0.898 0.965
0.1304 15.0 3945 0.3066 0.9 0.965

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.0