language:
- ca
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- collectivat/tv3_parla
- projecte-aina/parlament_parla
- generated_from_trainer
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
- collectivat/tv3_parla
- projecte-aina/parlament_parla
model-index:
- name: wav2vec2-xls-r-300m-ca
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_8_0 ca
type: mozilla-foundation/common_voice_8_0
args: ca
metrics:
- name: Test WER
type: wer
value: 0.13170091241317552
- name: Test CER
type: cer
value: 0.03356726205534543
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: projecte-aina/parlament_parla ca
type: projecte-aina/parlament_parla
args: clean
metrics:
- name: Test WER
type: wer
value: 0.08048005647723261
- name: Test CER
type: cer
value: 0.02240912911020065
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: collectivat/tv3_parla ca
type: collectivat/tv3_parla
args: ca
metrics:
- name: Test WER
type: wer
value: 0.23320629787889285
- name: Test CER
type: cer
value: 0.10439216202089989
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: speech-recognition-community-v2/dev_data ca
type: speech-recognition-community-v2/dev_data
args: ca
metrics:
- name: Test WER
type: wer
value: 0.3199671115046487
- name: Test CER
type: cer
value: 0.15820020687277325
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: ca
metrics:
- name: Test WER
type: wer
value: 22.04
wav2vec2-xls-r-300m-ca
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - CA, the tv3_parla and parlament_parla datasets. It achieves the following results on the evaluation set (for the three datasets):
- Loss: 0.2472
- Wer: 0.1499
Model description
Please check the original facebook/wav2vec2-xls-r-1b Model card. This is just a finetuned version of that model.
Intended uses & limitations
As any model trained on crowdsourced data, this model can show the biases and particularities of the data and model used to train this model. Moreover, since this is a speech recognition model, it may underperform for some lower-resourced dialects for the catalan language.
Training and evaluation data
More information needed
Training procedure
The data is preprocessed to remove characters not on the catalan alphabet. Moreover, numbers are verbalized using code provided by @ccoreilly, which can be found on the text/ folder or here.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 18.0
- mixed_precision_training: Native AMP
Training results
Check the Tensorboard tab to check the training profile and evaluation results along training. The model was evaluated on the test splits for each of the datasets used during training.
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
6.2099 | 0.09 | 500 | 3.4125 | 1.0 |
2.9961 | 0.18 | 1000 | 2.9224 | 1.0 |
2.2147 | 0.26 | 1500 | 0.6521 | 0.5568 |
1.3017 | 0.35 | 2000 | 0.3153 | 0.2761 |
1.1196 | 0.44 | 2500 | 0.2444 | 0.2367 |
1.0712 | 0.53 | 3000 | 0.2324 | 0.2132 |
1.052 | 0.62 | 3500 | 0.2173 | 0.2032 |
1.2813 | 2.13 | 4000 | 0.3326 | 0.2099 |
1.2365 | 2.4 | 4500 | 0.3224 | 0.2003 |
1.2193 | 2.66 | 5000 | 0.3198 | 0.1957 |
1.2072 | 2.93 | 5500 | 0.3063 | 0.1933 |
1.213 | 3.2 | 6000 | 0.3051 | 0.1980 |
1.2074 | 3.46 | 6500 | 0.3012 | 0.1879 |
1.1918 | 3.73 | 7000 | 0.2947 | 0.1829 |
1.1893 | 4.0 | 7500 | 0.2895 | 0.1807 |
1.1751 | 4.26 | 8000 | 0.2878 | 0.1776 |
1.1628 | 4.53 | 8500 | 0.2835 | 0.1731 |
1.1577 | 4.79 | 9000 | 0.2816 | 0.1761 |
1.1448 | 5.06 | 9500 | 0.2757 | 0.1740 |
1.1407 | 5.33 | 10000 | 0.2768 | 0.1798 |
1.1401 | 5.59 | 10500 | 0.2780 | 0.1816 |
1.1333 | 5.86 | 11000 | 0.2748 | 0.1750 |
1.1571 | 6.13 | 11500 | 0.2808 | 0.1708 |
1.1505 | 6.39 | 12000 | 0.2726 | 0.1692 |
1.1519 | 6.66 | 12500 | 0.2749 | 0.1654 |
1.136 | 6.93 | 13000 | 0.2765 | 0.1643 |
1.1326 | 7.19 | 13500 | 0.2706 | 0.1668 |
1.1342 | 7.46 | 14000 | 0.2665 | 0.1638 |
1.1286 | 7.72 | 14500 | 0.2669 | 0.1636 |
1.1243 | 7.99 | 15000 | 0.2619 | 0.1623 |
1.1173 | 8.26 | 15500 | 0.2652 | 0.1604 |
1.1129 | 8.52 | 16000 | 0.2610 | 0.1598 |
1.1091 | 8.79 | 16500 | 0.2608 | 0.1584 |
1.1053 | 9.06 | 17000 | 0.2633 | 0.1664 |
1.1004 | 9.32 | 17500 | 0.2594 | 0.1662 |
1.0995 | 9.59 | 18000 | 0.2623 | 0.1569 |
1.0964 | 9.86 | 18500 | 0.2624 | 0.1597 |
1.09 | 10.12 | 19000 | 0.2577 | 0.1578 |
1.089 | 10.39 | 19500 | 0.2574 | 0.1531 |
1.0864 | 10.66 | 20000 | 0.2556 | 0.1546 |
1.0806 | 10.92 | 20500 | 0.2548 | 0.1583 |
1.0842 | 11.19 | 21000 | 0.2550 | 0.1542 |
1.0805 | 11.45 | 21500 | 0.2561 | 0.1524 |
1.0722 | 11.72 | 22000 | 0.2540 | 0.1566 |
1.0763 | 11.99 | 22500 | 0.2549 | 0.1572 |
1.0835 | 12.25 | 23000 | 0.2586 | 0.1521 |
1.0883 | 12.52 | 23500 | 0.2583 | 0.1519 |
1.0888 | 12.79 | 24000 | 0.2551 | 0.1582 |
1.0933 | 13.05 | 24500 | 0.2628 | 0.1537 |
1.0799 | 13.32 | 25000 | 0.2600 | 0.1508 |
1.0804 | 13.59 | 25500 | 0.2620 | 0.1475 |
1.0814 | 13.85 | 26000 | 0.2537 | 0.1517 |
1.0693 | 14.12 | 26500 | 0.2560 | 0.1542 |
1.0724 | 14.38 | 27000 | 0.2540 | 0.1574 |
1.0704 | 14.65 | 27500 | 0.2548 | 0.1626 |
1.0729 | 14.92 | 28000 | 0.2548 | 0.1601 |
1.0724 | 15.18 | 28500 | 0.2511 | 0.1512 |
1.0655 | 15.45 | 29000 | 0.2498 | 0.1490 |
1.0608 | 15.98 | 30000 | 0.2487 | 0.1481 |
1.0541 | 16.52 | 31000 | 0.2468 | 0.1504 |
1.0584 | 17.05 | 32000 | 0.2467 | 0.1493 |
1.0507 | 17.58 | 33000 | 0.2481 | 0.1517 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
Thanks
Want to thank both @ccoreilly and @gullabi who have contributed with their own resources and knowledge into making this model possible.