PengQu commited on
Commit
59200e7
1 Parent(s): 42b0147

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md CHANGED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - anon8231489123/ShareGPT_Vicuna_unfiltered
5
+ - PengQu/langchain-MRKL-finetune
6
+ language:
7
+ - zh
8
+ - en
9
+ ---
10
+ # open_llama_7b_v2_vicuna_Chinese
11
+
12
+ open_llama_7b_v2_vicuna_Chinese是在中英双语sharegpt数据上全参数微调的对话模型。
13
+
14
+ - 基座模型:[open_llama_7b_v2](https://huggingface.co/openlm-research/open_llama_7b_v2), 允许商业使用。
15
+ - 微调数据:ShareGPT,ShareGPT-ZH,Langchain-MRKL-finetune
16
+ - 训练代码:基于[FastChat](https://github.com/lm-sys/FastChat)
17
+
18
+ open_llama_7b_v2_vicuna_Chinese is a chat model supervised finetuned on vicuna sharegpt data in both **English** and **Chinese**.
19
+
20
+ - Foundation model: [open_llama_7b_v2](https://huggingface.co/openlm-research/open_llama_7b_v2), a **commercially available** language model.
21
+ - Finetuning data: ShareGPT,ShareGPT-ZH,Langchain-MRKL-finetune
22
+ - Training code: based on [FastChat](https://github.com/lm-sys/FastChat)
23
+
24
+ ## Loading the Weights with Hugging Face Transformers
25
+ **Please note that it is advised to avoid using the Hugging Face fast tokenizer for now, as we’ve observed that** [**the auto-converted fast tokenizer sometimes gives incorrect tokenizations**](https://github.com/huggingface/transformers/issues/24233)**.** This can be achieved by directly using the `LlamaTokenizer` class, or passing in the `use_fast=False` option for the `AutoTokenizer` class. See the following example for usage.
26
+
27
+ ```python
28
+ from transformers import AutoTokenizer, AutoModelForCausalLM
29
+
30
+ tokenizer = AutoTokenizer.from_pretrained("PengQu/open_llama_7b_v2_vicuna_Chinese",use_fast=False)
31
+ model = AutoModelForCausalLM.from_pretrained("PengQu/open_llama_7b_v2_vicuna_Chinese").to("cuda:6")
32
+
33
+ prompt = '用flask写一个简单的http服务器。'
34
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda:6")
35
+
36
+ generation_output = model.generate(input_ids=input_ids, max_new_tokens=512)
37
+ print(tokenizer.decode(generation_output[0],skip_special_tokens=True))
38
+ ```
39
+
40
+ 输出如下(output as follows):<br>
41
+ ```
42
+ 用flask写一个简单的http服务器。
43
+
44
+ from flask import Flask
45
+ app = Flask(__name__)
46
+ @app.route('/')
47
+ def hello():
48
+ return 'Hello, World!'
49
+ if __name__ == '__main__':
50
+ app.run()
51
+
52
+ 这段代码定义了一个Flask应用程序,并为根路径('/')定义了一个路由。当用户在其Web浏览器中导航到该路径时,将调用`hello()`函数,并返回字符串“Hello, World!”。
53
+ 要运行此代码,您需要在计算机上安装Flask。您可以使用以下命令使用pip安装它:
54
+
55
+ pip install Flask
56
+
57
+ 安装Flask后,您可以使用以下命令运行代码:
58
+
59
+ python app.py
60
+
61
+ 这将启动一个本地开发服务器,您可以使用Web浏览器访问它,方法是导航到`http://localhost:5000/`。
62
+ 您还可以通过添加其他路由和功能来进一步自定义代码。例如,您可以为不同的端点定义不同的路由,并使用请求数据执行某些操作。您还可以向应用程序添加错误处理和用户身份验证。
63
+ ```
64
+ ## Major Improvement
65
+ - 基于open_llama_7b_v2训练,完全允许商业使用
66
+ - 英语效果与vicuna-7b持平,中文效果好于vicuna-7b
67
+ - 编程能力好于vicuna-7b,应该是open_llama_7b_v2用了StarCoder数据集
68
+ - 支持langchain-MRKL格式(agent= "zero-shot-react-description")
69
+ <br>
70
+ - Finetuned on openllama, allowing for commercial purposes.
71
+ - Achieves the same level of English performance as vicuna-7b and outperforms vicuna-7b in Chinese performance
72
+ - Has better programming ability than vicuna-7b, likely due to the use of the StarCoder dataset in open_llama_7b_v2
73
+ - Supports langchain-MRKL format(agent= "zero-shot-react-description").
74
+