Layoutlmlargetest / README.md
PeanutCoding's picture
End of training
8e66f8c verified
metadata
library_name: transformers
base_model: microsoft/layoutlm-large-uncased
tags:
  - generated_from_trainer
metrics:
  - f1
  - recall
  - precision
model-index:
  - name: Layoutlmlargetest
    results: []

Layoutlmlargetest

This model is a fine-tuned version of microsoft/layoutlm-large-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8743
  • F1: 0.7462
  • Recall: 0.7244
  • Precision: 0.7693
  • Pred Bestellnummer: 147
  • Percentage Pred Act Bestellnummer: 1.0280
  • Pred Kundennr.: 56
  • Percentage Pred Act Kundennr.: 1.1667
  • Pred Bezug 1: 26
  • Percentage Pred Act Bezug 1: 1.8571
  • Pred Modell 1: 96
  • Percentage Pred Act Modell 1: 0.9697
  • Pred Menge1: 25
  • Percentage Pred Act Menge1: 1.1905
  • Pred Menge4: 13
  • Percentage Pred Act Menge4: 1.3
  • Pred Möbelhaus: 94
  • Percentage Pred Act Möbelhaus: 1.0330
  • Pred Termin kundenwunsch - kw: 28
  • Percentage Pred Act Termin kundenwunsch - kw: 0.875
  • Pred Kommission: 57
  • Percentage Pred Act Kommission: 0.9828
  • Pred Holz 1: 22
  • Percentage Pred Act Holz 1: 1.1579
  • Pred Modell 2: 64
  • Percentage Pred Act Modell 2: 1.0323
  • Pred Zusatz 1: 14
  • Percentage Pred Act Zusatz 1: 1.0
  • Pred La-anschrift: 6
  • Percentage Pred Act La-anschrift: 1.0
  • Pred Bezug 2: 2
  • Percentage Pred Act Bezug 2: 0.1538
  • Pred Holz 2: 25
  • Percentage Pred Act Holz 2: 1.1905
  • Pred Menge3: 30
  • Percentage Pred Act Menge3: 1.3636
  • Pred Modell 3: 77
  • Percentage Pred Act Modell 3: 1.1667
  • Pred Bezug 4: 1
  • Percentage Pred Act Bezug 4: 0.1429
  • Pred Menge2: 9
  • Percentage Pred Act Menge2: 0.5
  • Pred Var-ausf 1: 8
  • Percentage Pred Act Var-ausf 1: 1.0
  • Pred Bezug 3: 9
  • Percentage Pred Act Bezug 3: 2.25
  • Act Bestellnummer: 143
  • Act Kundennr.: 48
  • Act Bezug 1: 14
  • Act Modell 1: 99
  • Act Menge1: 21
  • Act Menge4: 10
  • Act Möbelhaus: 91
  • Act Bezug 2: 13
  • Act Zusatz 2: 1
  • Act Termin kundenwunsch - kw: 32
  • Act Kommission: 58
  • Act Holz 1: 19
  • Act Menge3: 22
  • Act Modell 2: 62
  • Act Modell 3: 66
  • Act Modell 4: 6
  • Act Bezug 4: 7
  • Act Zusatz 3: 1
  • Act Holz 2: 21
  • Act Menge2: 18
  • Act Bezug 3: 4
  • Act Var-ausf 1: 8
  • Act Holz 3: 5
  • Act Zusatz 1: 14
  • Act Var-ausf. 2: 7
  • Act Var-ausf. 3: 4
  • Act Pv 3: 1
  • Act Holz 4: 1
  • Act Var-ausf. 5: 1
  • Act Modell 5: 5
  • Act La-anschrift: 6
  • Act Menge5: 1

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Framework versions

  • Transformers 4.53.0.dev0
  • Pytorch 2.7.0+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1