PaulMest commited on
Commit
65c87d6
1 Parent(s): f58de5c

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 274.77 +/- 21.31
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 289.01 +/- 19.70
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f396ff99ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f396ff99d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f396ff99dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f396ff99e50>", "_build": "<function ActorCriticPolicy._build at 0x7f396ff99ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f396ff99f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f396ff9e040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f396ff9e0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f396ff9e160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f396ff9e1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f396ff9e280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f396ff98540>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 4000768, "_total_timesteps": 4000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672296994535136696, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJpYu71sjoG7hQE4POMjlDxr+tC8AwZ9PQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00019199999999996997, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImggbnh5vcUCUhpRSlIwBbJRLwowBdJRHQMFprJpeu3d1fZQoaAZoCWgPQwhPeXQj7H1yQJSGlFKUaBVLumgWR0DBadbZamoBdX2UKGgGaAloD0MIcAZ/v5idcUCUhpRSlGgVS/FoFkdAwWoLM2WIGnV9lChoBmgJaA9DCEOs/ggDS3JAlIaUUpRoFUvpaBZHQMFqbHFglWx1fZQoaAZoCWgPQwi8eD9uv+1uQJSGlFKUaBVL/2gWR0DBaqUmY0EYdX2UKGgGaAloD0MIIa0x6ASfcUCUhpRSlGgVS9VoFkdAwWrSsH0K7nV9lChoBmgJaA9DCHxkc9U8tnBAlIaUUpRoFUvaaBZHQMFrArftQbd1fZQoaAZoCWgPQwh0toDQujFyQJSGlFKUaBVL0GgWR0DBazEM5OrRdX2UKGgGaAloD0MIs7PonQr7cECUhpRSlGgVS7xoFkdAwWuM5LAYYXV9lChoBmgJaA9DCISB597DiHFAlIaUUpRoFUvZaBZHQMFru2exwAF1fZQoaAZoCWgPQwgGuvYFtD1yQJSGlFKUaBVNHgFoFkdAwWv2xKxs23V9lChoBmgJaA9DCMvz4O4s8G9AlIaUUpRoFUu7aBZHQMFsHnFHavl1fZQoaAZoCWgPQwgH0VrR5kdyQJSGlFKUaBVLxWgWR0DBbEcUbkwOdX2UKGgGaAloD0MIL8N/ugGCbUCUhpRSlGgVS8doFkdAwWyiK8cuJ3V9lChoBmgJaA9DCBsPttitgXFAlIaUUpRoFUvlaBZHQMFs1INmUW51fZQoaAZoCWgPQwjKGvUQDctyQJSGlFKUaBVL2mgWR0DBbP9jI7vHdX2UKGgGaAloD0MId9fZkL+4cUCUhpRSlGgVTZwBaBZHQMFtYaDXe3x1fZQoaAZoCWgPQwgdAHFXr15wQJSGlFKUaBVLu2gWR0DBbbbu+h4/dX2UKGgGaAloD0MImG2nrZH3cUCUhpRSlGgVS+VoFkdAwW3o9pyp73V9lChoBmgJaA9DCCU+d4J9GXNAlIaUUpRoFUvjaBZHQMFuGoSL61t1fZQoaAZoCWgPQwic24R75aZxQJSGlFKUaBVL12gWR0DBbkY7Njb0dX2UKGgGaAloD0MIaVTgZFuVckCUhpRSlGgVTQgBaBZHQMFurnezlcR1fZQoaAZoCWgPQwhVv9L58D1yQJSGlFKUaBVL3mgWR0DBbuBn+Q2ddX2UKGgGaAloD0MICWtj7ITRcUCUhpRSlGgVS75oFkdAwW8IaqjrRnV9lChoBmgJaA9DCK2Imuizz3FAlIaUUpRoFUvcaBZHQMFvOnf/FR51fZQoaAZoCWgPQwiSdw5lqKZBQJSGlFKUaBVL1GgWR0DBb2YTXarWdX2UKGgGaAloD0MIDr+bbtlDcUCUhpRSlGgVS+BoFkdAwW/EPcSGrXV9lChoBmgJaA9DCKqB5nMuAnRAlIaUUpRoFUvTaBZHQMFv7n1WbPR1fZQoaAZoCWgPQwhvgm+avuVwQJSGlFKUaBVLvWgWR0DBcBY+0PYndX2UKGgGaAloD0MIB3x+GCHUckCUhpRSlGgVS8JoFkdAwXBDE2pAEHV9lChoBmgJaA9DCMSVs3dG7HFAlIaUUpRoFUv1aBZHQMFwebQ9ic51fZQoaAZoCWgPQwhm2ZPA5nxvQJSGlFKUaBVLxGgWR0DBcNeSEDhcdX2UKGgGaAloD0MIajS5GANfQ0CUhpRSlGgVS9RoFkdAwXEkuIRAbHV9lChoBmgJaA9DCGItPgWAUnNAlIaUUpRoFUvWaBZHQMFxcmwiaAp1fZQoaAZoCWgPQwicpPljWmtEQJSGlFKUaBVL1WgWR0DBcbgKx9ofdX2UKGgGaAloD0MIuVD513IVckCUhpRSlGgVS7loFkdAwXHzMB6rvXV9lChoBmgJaA9DCN7LfXIUtFBAlIaUUpRoFUvHaBZHQMFyfYwIt191fZQoaAZoCWgPQwghIcoX9BNxQJSGlFKUaBVL92gWR0DBcs49aEBbdX2UKGgGaAloD0MI8YRef5K0cUCUhpRSlGgVTUYBaBZHQMFzP8baRIV1fZQoaAZoCWgPQwit+IbCJ6txQJSGlFKUaBVLzGgWR0DBc4GJcgQpdX2UKGgGaAloD0MIveDTnDxScUCUhpRSlGgVS9FoFkdAwXQUwMYuTXV9lChoBmgJaA9DCOAruvWaDkJAlIaUUpRoFUuOaBZHQMF0SXEyckN1fZQoaAZoCWgPQwigGcQH9m5uQJSGlFKUaBVLx2gWR0DBdIer2g3+dX2UKGgGaAloD0MIkrOwpx3UcUCUhpRSlGgVS8FoFkdAwXTNAWzninV9lChoBmgJaA9DCK5/12cOVnJAlIaUUpRoFUvKaBZHQMF1A+De0ol1fZQoaAZoCWgPQwinlq31RYpwQJSGlFKUaBVLxmgWR0DBdVqgIyCWdX2UKGgGaAloD0MIByXMtP1tSECUhpRSlGgVS4RoFkdAwXV1yR0U5HV9lChoBmgJaA9DCF6EKcrlXXBAlIaUUpRoFUv9aBZHQMF1rLVe8f51fZQoaAZoCWgPQwhVaCCWzXdxQJSGlFKUaBVLy2gWR0DBddleWv8qdX2UKGgGaAloD0MI19zR/7LicECUhpRSlGgVS/5oFkdAwXYPhQ3xWnV9lChoBmgJaA9DCMDrM2d9mm5AlIaUUpRoFUvgaBZHQMF2cuIRAbB1fZQoaAZoCWgPQwiL3xRWqnRwQJSGlFKUaBVNAQFoFkdAwXardiUgS3V9lChoBmgJaA9DCJ91jZZD83JAlIaUUpRoFUvXaBZHQMF22JrULD11fZQoaAZoCWgPQwhj0Amhg5xwQJSGlFKUaBVLymgWR0DBdwHFglWwdX2UKGgGaAloD0MIE9TwLew2c0CUhpRSlGgVTRYBaBZHQMF3QZf2K2t1fZQoaAZoCWgPQwj7JHfYhBZwQJSGlFKUaBVLw2gWR0DBd5ue8PFvdX2UKGgGaAloD0MIC5sBLsgUckCUhpRSlGgVTSYBaBZHQMF3258a4tp1fZQoaAZoCWgPQwiTN8DMd5FyQJSGlFKUaBVNxwJoFkdAwXi9AeJYT3V9lChoBmgJaA9DCGsqi8KuEm5AlIaUUpRoFUvUaBZHQMF46r/sE7p1fZQoaAZoCWgPQwhz1qccEzJxQJSGlFKUaBVLyGgWR0DBeRMUj9n9dX2UKGgGaAloD0MIG2fTEYAWcUCUhpRSlGgVS79oFkdAwXk6H+Idl3V9lChoBmgJaA9DCPgcWI4Qd3BAlIaUUpRoFUvlaBZHQMF5aHuAqd91fZQoaAZoCWgPQwjytWeWBOpKQJSGlFKUaBVLlGgWR0DBea+5tm+TdX2UKGgGaAloD0MIon+CixWjbkCUhpRSlGgVS+RoFkdAwXnfkjHGTHV9lChoBmgJaA9DCMv1tplKJXFAlIaUUpRoFUvCaBZHQMF6CMIu5Bl1fZQoaAZoCWgPQwgdBYiC2alyQJSGlFKUaBVNtwFoFkdAwXpssBhhIHV9lChoBmgJaA9DCDy858Cy03JAlIaUUpRoFU0GAWgWR0DBetMFdLQHdX2UKGgGaAloD0MII8DpXTw0cECUhpRSlGgVS8NoFkdAwXr9Vo6CDnV9lChoBmgJaA9DCJCkpIchj2VAlIaUUpRoFU3oA2gWR0DBfB21jRUndX2UKGgGaAloD0MIPX5v09/KcECUhpRSlGgVS+9oFkdAwXxXKdxyXHV9lChoBmgJaA9DCJt1xvfFP2NAlIaUUpRoFU3oA2gWR0DBfZK2jO9ndX2UKGgGaAloD0MIApzexfv1SkCUhpRSlGgVS4xoFkdAwX2wpRXOnnV9lChoBmgJaA9DCMsUcxD0OHJAlIaUUpRoFUvUaBZHQMF93Po/zJ91fZQoaAZoCWgPQwgRqz/C8GtxQJSGlFKUaBVLtGgWR0DBfjBvWH1wdX2UKGgGaAloD0MIOEvJctI6cUCUhpRSlGgVS71oFkdAwX5Y6OHWSXV9lChoBmgJaA9DCLO3lPMFMHJAlIaUUpRoFU0uAWgWR0DBfp9Tzd1udX2UKGgGaAloD0MIz4HlCJlzcECUhpRSlGgVS+5oFkdAwX7SyLQ5WHV9lChoBmgJaA9DCNaqXRPSGnFAlIaUUpRoFUvJaBZHQMF/KsLncL11fZQoaAZoCWgPQwjbv7LSZOFxQJSGlFKUaBVLv2gWR0DBf1PfGdZrdX2UKGgGaAloD0MIMxtkklFcckCUhpRSlGgVS89oFkdAwX+CTJyQxXV9lChoBmgJaA9DCBy0Vx+PVHFAlIaUUpRoFUvNaBZHQMF/sBd+ocd1fZQoaAZoCWgPQwjXUGov4vhxQJSGlFKUaBVNFQFoFkdAwX/wsWfseHV9lChoBmgJaA9DCCaN0Tpqy3JAlIaUUpRoFU0MAWgWR0DBgGDTF2mpdX2UKGgGaAloD0MInkDYKRaOcECUhpRSlGgVS8BoFkdAwYCK1E3KjnV9lChoBmgJaA9DCIE+kSdJWnFAlIaUUpRoFUvEaBZHQMGAtbkGRmt1fZQoaAZoCWgPQwhtcCL69UdxQJSGlFKUaBVL0mgWR0DBgOWNvOyFdX2UKGgGaAloD0MIk8fT8gM/cUCUhpRSlGgVS8JoFkdAwYEP2oNutXV9lChoBmgJaA9DCDv/dtkv7nBAlIaUUpRoFUvNaBZHQMGBZ9cbBGh1fZQoaAZoCWgPQwjMYfcdA1NwQJSGlFKUaBVLxWgWR0DBgZYqCpWFdX2UKGgGaAloD0MIPj4hOy8Jc0CUhpRSlGgVS9ZoFkdAwYHFppvgnHV9lChoBmgJaA9DCIGSAgvghXBAlIaUUpRoFU0EAWgWR0DBggN7Uoa2dX2UKGgGaAloD0MIuwuUFNh0bkCUhpRSlGgVS9RoFkdAwYIw+sYEXHV9lChoBmgJaA9DCJFkVu9wz3BAlIaUUpRoFUvkaBZHQMGCjppFkQR1fZQoaAZoCWgPQwhmFqHYSm9yQJSGlFKUaBVL9mgWR0DBgsQN5MURdX2UKGgGaAloD0MINLxZg/doc0CUhpRSlGgVTRoBaBZHQMGDAWhIvrZ1fZQoaAZoCWgPQwjnVZ3VAhJxQJSGlFKUaBVL+WgWR0DBgzOAoXsPdX2UKGgGaAloD0MIbMzriEOubkCUhpRSlGgVS9poFkdAwYONs6aLGnV9lChoBmgJaA9DCKUV31B4U3BAlIaUUpRoFUvSaBZHQMGDvAd4mkZ1fZQoaAZoCWgPQwiw6NZrejNQQJSGlFKUaBVL9mgWR0DBg/A3aSLZdX2UKGgGaAloD0MIZYo5CDqBc0CUhpRSlGgVS9VoFkdAwYQcaAFxGXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 15708, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x16c698a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x16c698af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x16c698b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x16c698c10>", "_build": "<function ActorCriticPolicy._build at 0x16c698ca0>", "forward": "<function ActorCriticPolicy.forward at 0x16c698d30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x16c698dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x16c698e50>", "_predict": "<function ActorCriticPolicy._predict at 0x16c698ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x16c698f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x16c699000>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x16c699090>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x16c69f7c0>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "num_timesteps": 4063232, "_total_timesteps": 4000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672374482615753000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVnAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMai9Vc2Vycy9wYXVsLy5weWVudi92ZXJzaW9ucy9tbC1zdHVmZi0zXzEwXzgvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuBQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAE1Pbb3Dxy68rfI9Pfv3ID0UHIM8EupXuwAAgD8AAIA/wJCqvefqVT4b2Gw+sLbdvgTXADvmOeE9AAAAAAAAAACNZks+SQQ0P970bb1/MRe/JB7VPkJ/ur0AAAAAAAAAAHM9Gj5vOK8+1QOHvtyX6L4Obvo9Ju9tvgAAAAAAAAAAs2YOPa53iroB2IW54pOAtBRU+Dqou5s4AACAPwAAgD9mQcu8mymdPdQLqT6Cy7C+Pja6PuZo0j0AAAAAAAAAABoOmT35r2c+I+yovjoMyb7Mj4e+yqGWvQAAAAAAAAAAc+CGPb64kz9aYqc+tE4Vv8SYCD7KYVg+AAAAAAAAAAAAYoE87CGkuUqRfz0si2GyCZHuOpH7A7QAAIA/AACAP2ZwXTyPvmO6zbTkMusrhbCdare5ztuGswAAgD8AAIA/zXxEvt8Yjz4AQhg/1s7jvvFRzz3RBpg+AAAAAAAAAACCP4i+Z8I1vdjOajgSH803E1SdProhm7cAAIA/AACAPwDId71IOZy8kqqjPQAlE71sDKw9sweQPgAAgD8AAIA/s3QKPUs1tD9TrTE+NU2LvotMgT19aUi7AAAAAAAAAAAzFcq8BZfcuzqIf7uBvLQ8dBs2PVaXlr0AAIA/AACAPwBysbwULvq4iKSGuoIjjrYSgyu7iqefOQAAgD8AAIA/Td+pPSvflD4m//+9zzn3vg2rnj0Y46q9AAAAAAAAAADNvJM6FOiduuIrlrOgJqWsSsmfubPRrDMAAIA/AACAP80Lcb1kX6I+oIrUPaHa077p+DS910ELPQAAAAAAAAAA3UF2vnZhMD/RXhW+7WIfv18C5r51Tko9AAAAAAAAAACaZ1w8j0Zvup1q4bpn8i4zrPzDOhNQYbMAAIA/AACAPwClq7zhdIi6CgJXvt5z77IhLLk6ikXCMgAAgD8AAIA/TWAiPf+pWj+ydbU67kQzv6iz3D3usw89AAAAAAAAAABGGz++uHerPm4xqj65DdO+LyGBvX5idT4AAAAAAAAAAFoUpb3pXV+8PRngPaKqgT1nT6i9S5bAPAAAAAAAAIA/oI4avjW0/D5mS4g+a4Qdv3Hz7b30NTw+AAAAAAAAAAAmWYq+t++PPyOEi763lR+/RnsFv4PyG74AAAAAAAAAAEBqlr0pGCO67OghvFXXQznAKkw75YK0uAAAgD8AAIA/mjDkvEjpmrpSjoy1p5efsCo68bryVLY0AACAPwAAgD8T5QK+ei4vPhiciT7yoti+teaRPA1D/z0AAAAAAAAAADOEEz2wZ6I/uphpPp4ADb9vcKI9UfkQPgAAAAAAAAAATUBYvRVfLj9B7Jw8DJknv8sUD73TMSU9AAAAAAAAAAANA5G95fNiPxI67rxnGxe//2PbvWmAiTwAAAAAAAAAAE0yKD63qSE/eOrlvQqpFb82AnQ+dr5/vQAAAAAAAAAA7SpyPt+yNT9j2rK9FzUKvzmtsz7K8K69AAAAAAAAAAAz15C7KVluP5o1JLsPJT+/LxssvOaLkTwAAAAAAAAAADO07bwMQy0/ljknvBv0JL9vGX69XAgVvAAAAAAAAAAA5j5+PSTy2T520kG90WMov7+Boz3ptpS9AAAAAAAAAABaRls+zqBWP1HVyj2PyQO/QIy/PmjDuL0AAAAAAAAAAMAAAr5Wp5o/UOXXvkk0G78jIHK+axZhvgAAAAAAAAAAAMzlOyl0SLoZxUG8kYcFssXzGTtbTfkzAACAPwAAgD8zM9o5DkmwvDgs1zsJA688MCfqPEacDj0AAIA/AACAPzOoVr02qb0/NVuNvoq0U72qbsy9Bk0XvgAAAAAAAAAAMwFLvcaooj8F09C99lkxvwy5u73aD/S8AAAAAAAAAACATjO9AZEePu7WXT0rgbm+VfqEvCh3/zwAAAAAAAAAAAA1hTzSlIm7n6i/u2kKkTsAFfQ8FkmKvAAAgD8AAIA/Tfl9PaF6jj+KNRU+baUpv9E/Fz6+DWk9AAAAAAAAAADNtX29C50vP1VxAj1aMxK/lFwfvRVNXj0AAAAAAAAAANqZ/r3vnyw/g+SBPOL2Kb+8LS2+jrvxOgAAAAAAAAAAc+Q0PmRFvz4Babq+8JbkvvV96j0uUle+AAAAAAAAAACaAdK8cfNVu+d0SLzI94Q84cmfPMtFZb0AAIA/AACAP83ctrqDdCK8thrNPXbTij2jFBa83q7VOwAAgD8AAIA/mrMAvGSVIj+4L1G9EgcMvxLHy7pUh7i7AAAAAAAAAABmeaw8Ci1VPDAhVr7RA1y+mKE9vnDOPj8AAIA/AAAAAHNkpz3fVK0+/gNHvt0k37641UU9QkohvgAAAAAAAAAAzckRvTeXez+8I5C9A39CvypIjb3dy7y8AAAAAAAAAABT1x6+ZHIqP6avez1RzCe/QBKAvncytD0AAAAAAAAAAM3omzw4H627nLYKvkrV+LtcxHc6EkMAvQAAgD8AAIA/cNe3vveDXD9Ws3s8ywAWv/lFC7/zwPY9AAAAAAAAAADKS7Q+FkxyP4tcDbyREhS/3rQPPw7cW74AAAAAAAAAAADQjLuFy/q7doHWvGQzN7lUVWY9U3XsugAAgD8AAIA/2jKXvZBC9j4x6cc98JgWv2h4Cr5vz709AAAAAAAAAABm1WA9+CWSPhqlrb4nUcK+5DIVvhrfbr4AAAAAAAAAAOZCL70WZkw92vCLPaOJtb6/evM4wAbiuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/YLdsO20ckCUhpRSlIwBbJRLsIwBdJRHQJ6wgQ9RrJt1fZQoaAZoCWgPQwhdpFAWPnJyQJSGlFKUaBVL02gWR0CesJoBJZntdX2UKGgGaAloD0MIxofZy/brcUCUhpRSlGgVS6poFkdAnrEdgOSW7nV9lChoBmgJaA9DCCbGMv0S8XFAlIaUUpRoFUu4aBZHQJ6xKYZ2pyZ1fZQoaAZoCWgPQwhPkUPEzZRwQJSGlFKUaBVLt2gWR0CesTfgJkXldX2UKGgGaAloD0MI9MRztkArcECUhpRSlGgVS7doFkdAnrFXQQcxTXV9lChoBmgJaA9DCInuWdcoSHJAlIaUUpRoFUvJaBZHQJ6xYJ3PiUB1fZQoaAZoCWgPQwhl3qrrEBhzQJSGlFKUaBVL1GgWR0CesXdcjZ+QdX2UKGgGaAloD0MIOutTjsnBcUCUhpRSlGgVS7loFkdAnrGLf+CK8HV9lChoBmgJaA9DCCNqos9HEXFAlIaUUpRoFUu2aBZHQJ6xoPrfLs91fZQoaAZoCWgPQwjjb3uCRLtwQJSGlFKUaBVLyWgWR0CesdbpeNT+dX2UKGgGaAloD0MIEw8om/L6c0CUhpRSlGgVS8doFkdAnrHiu+yquXV9lChoBmgJaA9DCPz/OGECxnJAlIaUUpRoFUu3aBZHQJ6x9pmEoOR1fZQoaAZoCWgPQwgGuCBb1nhzQJSGlFKUaBVLymgWR0Cesjl/YraudX2UKGgGaAloD0MIajF4mPaMc0CUhpRSlGgVS9loFkdAnrI4f0VafXV9lChoBmgJaA9DCKfOo+I/OHBAlIaUUpRoFUu2aBZHQJ6yNv863iJ1fZQoaAZoCWgPQwjrcd9q3WlwQJSGlFKUaBVLxmgWR0Cesk67/XGwdX2UKGgGaAloD0MIacai6awockCUhpRSlGgVS8loFkdAnrJaqfe1r3V9lChoBmgJaA9DCEJ8YMd/QHJAlIaUUpRoFUuuaBZHQJ6yZKjBVMp1fZQoaAZoCWgPQwj7srRTM2dyQJSGlFKUaBVLyGgWR0CesmLVFx4qdX2UKGgGaAloD0MI3c8pyE/Rb0CUhpRSlGgVS6RoFkdAnrKjhLoOhHV9lChoBmgJaA9DCDSfc7frZ3FAlIaUUpRoFUvOaBZHQJ6y1/y5I6N1fZQoaAZoCWgPQwg6V5QSQjRwQJSGlFKUaBVLtmgWR0Cesv4yoGY8dX2UKGgGaAloD0MIM4l6waeJbkCUhpRSlGgVS9BoFkdAnrMfyCnP3XV9lChoBmgJaA9DCB+6oL6lfXNAlIaUUpRoFUvBaBZHQJ6zHGDL8rJ1fZQoaAZoCWgPQwiX5lYI649zQJSGlFKUaBVLw2gWR0Ces0nh86V/dX2UKGgGaAloD0MIGR2QhD1ackCUhpRSlGgVS6doFkdAnrNUnCwbEXV9lChoBmgJaA9DCIVE2sYfE3NAlIaUUpRoFUu6aBZHQJ6zZxp+MIh1fZQoaAZoCWgPQwgHKXgKuTt0QJSGlFKUaBVL8mgWR0Ces3kyULUkdX2UKGgGaAloD0MIelG7X8XwcECUhpRSlGgVS7doFkdAnrOC1uzhP3V9lChoBmgJaA9DCABw7NmzmHJAlIaUUpRoFUvVaBZHQJ6zyZgG8mN1fZQoaAZoCWgPQwisAyDual9zQJSGlFKUaBVLyWgWR0CetAY/Vy3kdX2UKGgGaAloD0MIGXYYkz7CckCUhpRSlGgVS7BoFkdAnrReXE61cHV9lChoBmgJaA9DCBjNyvbhbHBAlIaUUpRoFUu7aBZHQJ60dU3n6mB1fZQoaAZoCWgPQwiN1HsqpyVPQJSGlFKUaBVLfGgWR0CetKfXf642dX2UKGgGaAloD0MIy/J1Gf5UcUCUhpRSlGgVS75oFkdAnrU2MXJo03V9lChoBmgJaA9DCM1c4PJYx3BAlIaUUpRoFUuqaBZHQJ61WYNRWLh1fZQoaAZoCWgPQwiuEFZjSdBxQJSGlFKUaBVLzGgWR0CetXHyVfNSdX2UKGgGaAloD0MIls/yPLjpc0CUhpRSlGgVS75oFkdAnrX7Zi/fwnV9lChoBmgJaA9DCOCgvfp4LnFAlIaUUpRoFUuyaBZHQJ62B6C17Y11fZQoaAZoCWgPQwh8X1yq0rdxQJSGlFKUaBVLt2gWR0Ceth3Td+G5dX2UKGgGaAloD0MIG2MnvMQMcECUhpRSlGgVS7xoFkdAnrYncDbJwXV9lChoBmgJaA9DCJD0aRU9X3FAlIaUUpRoFUuoaBZHQJ62PZJ04ip1fZQoaAZoCWgPQwjWx0Pf3YtzQJSGlFKUaBVL2mgWR0CetlqagElmdX2UKGgGaAloD0MIG2K85pXWc0CUhpRSlGgVS7hoFkdAnrZaG+K0lnV9lChoBmgJaA9DCOkrSDPWbHBAlIaUUpRoFUu6aBZHQJ62cD7qIJt1fZQoaAZoCWgPQwhJERlWsVdzQJSGlFKUaBVLw2gWR0Cetsc8kleGdX2UKGgGaAloD0MIMxr5vKJqcUCUhpRSlGgVS91oFkdAnrbc/+sHSnV9lChoBmgJaA9DCKz9ne3RuXFAlIaUUpRoFUvRaBZHQJ625SP2f051fZQoaAZoCWgPQwhJ1uHoqs1xQJSGlFKUaBVLm2gWR0CetvDKoybhdX2UKGgGaAloD0MIg8MLIpKZcUCUhpRSlGgVS7NoFkdAnrcnbRF7U3V9lChoBmgJaA9DCPLOoQyVuHFAlIaUUpRoFUvIaBZHQJ63Mt29tdl1fZQoaAZoCWgPQwgAcy1agPtwQJSGlFKUaBVLxWgWR0Cet4C8OCoTdX2UKGgGaAloD0MIVTTW/s5/ckCUhpRSlGgVS7hoFkdAnreaY3Ns33V9lChoBmgJaA9DCG/Vdajm1HJAlIaUUpRoFUvHaBZHQJ63p2Qnx8V1fZQoaAZoCWgPQwjNBS6PdTd0QJSGlFKUaBVL5mgWR0Cet7DBMzuXdX2UKGgGaAloD0MIRUjdzv6ncUCUhpRSlGgVS85oFkdAnrfEHIIWxnV9lChoBmgJaA9DCPOv5ZUrNnFAlIaUUpRoFUvFaBZHQJ630nRb8m91fZQoaAZoCWgPQwjOcW4TLrBxQJSGlFKUaBVLw2gWR0CeuAy925hCdX2UKGgGaAloD0MI7nvUX68IckCUhpRSlGgVS6poFkdAnrhRpQDV6XV9lChoBmgJaA9DCMuCiT9K0HNAlIaUUpRoFUvdaBZHQJ64cx9G7SR1fZQoaAZoCWgPQwjerwJ8t7VyQJSGlFKUaBVLyGgWR0CeuJ5jH4oJdX2UKGgGaAloD0MI4xdeSTJHckCUhpRSlGgVS6poFkdAnrimb1AZ9HV9lChoBmgJaA9DCOChKNAnXnJAlIaUUpRoFUvIaBZHQJ649xEORT11fZQoaAZoCWgPQwjdJXFWhKJyQJSGlFKUaBVLumgWR0CeuT/3WWhRdX2UKGgGaAloD0MIEf+wpYc8dECUhpRSlGgVS9toFkdAnrlm6f8Mu3V9lChoBmgJaA9DCH2utmL/63FAlIaUUpRoFUvAaBZHQJ65ZhH9WIZ1fZQoaAZoCWgPQwgRx7q4DdNzQJSGlFKUaBVL3GgWR0CeuZ+qioKldX2UKGgGaAloD0MI5PT1fA1tckCUhpRSlGgVS9loFkdAnrmeDOC5E3V9lChoBmgJaA9DCJpd91akIXJAlIaUUpRoFUuvaBZHQJ65q9qUNa11fZQoaAZoCWgPQwg8+l+uhbVxQJSGlFKUaBVLsmgWR0CeubTI/7iydX2UKGgGaAloD0MI6lxRSkhPc0CUhpRSlGgVS7poFkdAnroRT4tYjnV9lChoBmgJaA9DCLN+MzFdEXNAlIaUUpRoFUvVaBZHQJ66GUQkHD91fZQoaAZoCWgPQwjbvkf9dTxyQJSGlFKUaBVLyWgWR0CeuhiS7oStdX2UKGgGaAloD0MIr5emCPBXcUCUhpRSlGgVS7hoFkdAnromqxTsIHV9lChoBmgJaA9DCKVrJt/s0XFAlIaUUpRoFUuzaBZHQJ66cu/UONJ1fZQoaAZoCWgPQwhYVpqUAn5xQJSGlFKUaBVLv2gWR0CeunOJcgQpdX2UKGgGaAloD0MIcvkP6ffUckCUhpRSlGgVS8poFkdAnrp/OIInjXV9lChoBmgJaA9DCHiAJy1cPW9AlIaUUpRoFUvgaBZHQJ66n7VJ+Uh1fZQoaAZoCWgPQwjQQgJG1+JxQJSGlFKUaBVLvWgWR0CeuquTRplCdX2UKGgGaAloD0MIk+F4PsM5ckCUhpRSlGgVS6hoFkdAnrqrgsK9f3V9lChoBmgJaA9DCIyFIXL6SHFAlIaUUpRoFUvdaBZHQJ66tYaHbh51fZQoaAZoCWgPQwjQmh9/6TpyQJSGlFKUaBVL0mgWR0CeusLDAJswdX2UKGgGaAloD0MInu+nxku7cUCUhpRSlGgVS6loFkdAnrrARsdkrnV9lChoBmgJaA9DCLdCWI0lpHBAlIaUUpRoFUvQaBZHQJ66/QKKHfx1fZQoaAZoCWgPQwj8cfvlU0FzQJSGlFKUaBVL0mgWR0CeuzA80UGndX2UKGgGaAloD0MIJEVkWEUvc0CUhpRSlGgVS7poFkdAnrs6UiY9gXV9lChoBmgJaA9DCEYKZeErpXNAlIaUUpRoFUvAaBZHQJ67Rjd56dF1fZQoaAZoCWgPQwiymxn9KAByQJSGlFKUaBVL4mgWR0Ceu1bblA/tdX2UKGgGaAloD0MIeLRxxFq7cECUhpRSlGgVS8hoFkdAnrtzfBN21XV9lChoBmgJaA9DCNpWs8548HJAlIaUUpRoFUvGaBZHQJ67pkjHGS91fZQoaAZoCWgPQwg7HF2lO+VwQJSGlFKUaBVLw2gWR0Ceu6Rc/t6YdX2UKGgGaAloD0MIDD1i9JwycUCUhpRSlGgVS69oFkdAnrvk9IPK+3V9lChoBmgJaA9DCCFcAYX6AXNAlIaUUpRoFUvXaBZHQJ68HmSyMUB1fZQoaAZoCWgPQwgQ5+EEprhwQJSGlFKUaBVLuWgWR0CevDDVH4GmdX2UKGgGaAloD0MIIhlybH0SckCUhpRSlGgVS8xoFkdAnrxYR7JGOXV9lChoBmgJaA9DCO4jtyYd1HJAlIaUUpRoFUuraBZHQJ68jMHKOkt1fZQoaAZoCWgPQwgmbarukZtvQJSGlFKUaBVLrGgWR0CevKqz7di2dX2UKGgGaAloD0MIZOjYQWWHdECUhpRSlGgVS75oFkdAnryoFeOXFHV9lChoBmgJaA9DCGnjiLX45nNAlIaUUpRoFUvRaBZHQJ68x2NedCp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVHwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMdi9Vc2Vycy9wYXVsLy5weWVudi92ZXJzaW9ucy8zLjEwLjgvZW52cy9tbC1zdHVmZi0zXzEwXzgvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuBQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHYvVXNlcnMvcGF1bC8ucHllbnYvdmVyc2lvbnMvMy4xMC44L2VudnMvbWwtc3R1ZmYtM18xMF84L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-13.1-arm64-arm-64bit Darwin Kernel Version 22.2.0: Fri Nov 11 02:03:51 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T6000", "Python": "3.10.8", "Stable-Baselines3": "2.0.0a0", "PyTorch": "1.13.0", "GPU Enabled": "False", "Numpy": "1.23.5", "Gym": "0.27.0"}}
ppo-LunarLander-v2-paulmest-2022-12-29_21-00-57-4000000.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e1f3f9403294f04d0e2cdfe67f4426a64b9a2f4d3905f648d6dfae593ba235b
3
+ size 149727
ppo-LunarLander-v2-paulmest-2022-12-29_21-00-57-4000000/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a0
ppo-LunarLander-v2-paulmest-2022-12-29_21-00-57-4000000/data ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x16c698a60>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x16c698af0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x16c698b80>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x16c698c10>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x16c698ca0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x16c698d30>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x16c698dc0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x16c698e50>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x16c698ee0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x16c698f70>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x16c699000>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x16c699090>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x16c69f7c0>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
26
+ ":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
27
+ "dtype": "float32",
28
+ "bounded_below": "[ True True True True True True True True]",
29
+ "bounded_above": "[ True True True True True True True True]",
30
+ "_shape": [
31
+ 8
32
+ ],
33
+ "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
34
+ "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
35
+ "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
36
+ "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
37
+ "_np_random": null
38
+ },
39
+ "action_space": {
40
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
41
+ ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
42
+ "n": "4",
43
+ "start": "0",
44
+ "_shape": [],
45
+ "dtype": "int64",
46
+ "_np_random": null
47
+ },
48
+ "n_envs": 64,
49
+ "num_timesteps": 4063232,
50
+ "_total_timesteps": 4000000,
51
+ "_num_timesteps_at_start": 0,
52
+ "seed": null,
53
+ "action_noise": null,
54
+ "start_time": 1672374482615753000,
55
+ "learning_rate": 0.0003,
56
+ "tensorboard_log": null,
57
+ "lr_schedule": {
58
+ ":type:": "<class 'function'>",
59
+ ":serialized:": "gAWVnAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMai9Vc2Vycy9wYXVsLy5weWVudi92ZXJzaW9ucy9tbC1zdHVmZi0zXzEwXzgvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuBQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
60
+ },
61
+ "_last_obs": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAE1Pbb3Dxy68rfI9Pfv3ID0UHIM8EupXuwAAgD8AAIA/wJCqvefqVT4b2Gw+sLbdvgTXADvmOeE9AAAAAAAAAACNZks+SQQ0P970bb1/MRe/JB7VPkJ/ur0AAAAAAAAAAHM9Gj5vOK8+1QOHvtyX6L4Obvo9Ju9tvgAAAAAAAAAAs2YOPa53iroB2IW54pOAtBRU+Dqou5s4AACAPwAAgD9mQcu8mymdPdQLqT6Cy7C+Pja6PuZo0j0AAAAAAAAAABoOmT35r2c+I+yovjoMyb7Mj4e+yqGWvQAAAAAAAAAAc+CGPb64kz9aYqc+tE4Vv8SYCD7KYVg+AAAAAAAAAAAAYoE87CGkuUqRfz0si2GyCZHuOpH7A7QAAIA/AACAP2ZwXTyPvmO6zbTkMusrhbCdare5ztuGswAAgD8AAIA/zXxEvt8Yjz4AQhg/1s7jvvFRzz3RBpg+AAAAAAAAAACCP4i+Z8I1vdjOajgSH803E1SdProhm7cAAIA/AACAPwDId71IOZy8kqqjPQAlE71sDKw9sweQPgAAgD8AAIA/s3QKPUs1tD9TrTE+NU2LvotMgT19aUi7AAAAAAAAAAAzFcq8BZfcuzqIf7uBvLQ8dBs2PVaXlr0AAIA/AACAPwBysbwULvq4iKSGuoIjjrYSgyu7iqefOQAAgD8AAIA/Td+pPSvflD4m//+9zzn3vg2rnj0Y46q9AAAAAAAAAADNvJM6FOiduuIrlrOgJqWsSsmfubPRrDMAAIA/AACAP80Lcb1kX6I+oIrUPaHa077p+DS910ELPQAAAAAAAAAA3UF2vnZhMD/RXhW+7WIfv18C5r51Tko9AAAAAAAAAACaZ1w8j0Zvup1q4bpn8i4zrPzDOhNQYbMAAIA/AACAPwClq7zhdIi6CgJXvt5z77IhLLk6ikXCMgAAgD8AAIA/TWAiPf+pWj+ydbU67kQzv6iz3D3usw89AAAAAAAAAABGGz++uHerPm4xqj65DdO+LyGBvX5idT4AAAAAAAAAAFoUpb3pXV+8PRngPaKqgT1nT6i9S5bAPAAAAAAAAIA/oI4avjW0/D5mS4g+a4Qdv3Hz7b30NTw+AAAAAAAAAAAmWYq+t++PPyOEi763lR+/RnsFv4PyG74AAAAAAAAAAEBqlr0pGCO67OghvFXXQznAKkw75YK0uAAAgD8AAIA/mjDkvEjpmrpSjoy1p5efsCo68bryVLY0AACAPwAAgD8T5QK+ei4vPhiciT7yoti+teaRPA1D/z0AAAAAAAAAADOEEz2wZ6I/uphpPp4ADb9vcKI9UfkQPgAAAAAAAAAATUBYvRVfLj9B7Jw8DJknv8sUD73TMSU9AAAAAAAAAAANA5G95fNiPxI67rxnGxe//2PbvWmAiTwAAAAAAAAAAE0yKD63qSE/eOrlvQqpFb82AnQ+dr5/vQAAAAAAAAAA7SpyPt+yNT9j2rK9FzUKvzmtsz7K8K69AAAAAAAAAAAz15C7KVluP5o1JLsPJT+/LxssvOaLkTwAAAAAAAAAADO07bwMQy0/ljknvBv0JL9vGX69XAgVvAAAAAAAAAAA5j5+PSTy2T520kG90WMov7+Boz3ptpS9AAAAAAAAAABaRls+zqBWP1HVyj2PyQO/QIy/PmjDuL0AAAAAAAAAAMAAAr5Wp5o/UOXXvkk0G78jIHK+axZhvgAAAAAAAAAAAMzlOyl0SLoZxUG8kYcFssXzGTtbTfkzAACAPwAAgD8zM9o5DkmwvDgs1zsJA688MCfqPEacDj0AAIA/AACAPzOoVr02qb0/NVuNvoq0U72qbsy9Bk0XvgAAAAAAAAAAMwFLvcaooj8F09C99lkxvwy5u73aD/S8AAAAAAAAAACATjO9AZEePu7WXT0rgbm+VfqEvCh3/zwAAAAAAAAAAAA1hTzSlIm7n6i/u2kKkTsAFfQ8FkmKvAAAgD8AAIA/Tfl9PaF6jj+KNRU+baUpv9E/Fz6+DWk9AAAAAAAAAADNtX29C50vP1VxAj1aMxK/lFwfvRVNXj0AAAAAAAAAANqZ/r3vnyw/g+SBPOL2Kb+8LS2+jrvxOgAAAAAAAAAAc+Q0PmRFvz4Babq+8JbkvvV96j0uUle+AAAAAAAAAACaAdK8cfNVu+d0SLzI94Q84cmfPMtFZb0AAIA/AACAP83ctrqDdCK8thrNPXbTij2jFBa83q7VOwAAgD8AAIA/mrMAvGSVIj+4L1G9EgcMvxLHy7pUh7i7AAAAAAAAAABmeaw8Ci1VPDAhVr7RA1y+mKE9vnDOPj8AAIA/AAAAAHNkpz3fVK0+/gNHvt0k37641UU9QkohvgAAAAAAAAAAzckRvTeXez+8I5C9A39CvypIjb3dy7y8AAAAAAAAAABT1x6+ZHIqP6avez1RzCe/QBKAvncytD0AAAAAAAAAAM3omzw4H627nLYKvkrV+LtcxHc6EkMAvQAAgD8AAIA/cNe3vveDXD9Ws3s8ywAWv/lFC7/zwPY9AAAAAAAAAADKS7Q+FkxyP4tcDbyREhS/3rQPPw7cW74AAAAAAAAAAADQjLuFy/q7doHWvGQzN7lUVWY9U3XsugAAgD8AAIA/2jKXvZBC9j4x6cc98JgWv2h4Cr5vz709AAAAAAAAAABm1WA9+CWSPhqlrb4nUcK+5DIVvhrfbr4AAAAAAAAAAOZCL70WZkw92vCLPaOJtb6/evM4wAbiuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_episode_starts": {
66
+ ":type:": "<class 'numpy.ndarray'>",
67
+ ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="
68
+ },
69
+ "_last_original_obs": null,
70
+ "_episode_num": 0,
71
+ "use_sde": false,
72
+ "sde_sample_freq": -1,
73
+ "_current_progress_remaining": -0.015808000000000044,
74
+ "ep_info_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/YLdsO20ckCUhpRSlIwBbJRLsIwBdJRHQJ6wgQ9RrJt1fZQoaAZoCWgPQwhdpFAWPnJyQJSGlFKUaBVL02gWR0CesJoBJZntdX2UKGgGaAloD0MIxofZy/brcUCUhpRSlGgVS6poFkdAnrEdgOSW7nV9lChoBmgJaA9DCCbGMv0S8XFAlIaUUpRoFUu4aBZHQJ6xKYZ2pyZ1fZQoaAZoCWgPQwhPkUPEzZRwQJSGlFKUaBVLt2gWR0CesTfgJkXldX2UKGgGaAloD0MI9MRztkArcECUhpRSlGgVS7doFkdAnrFXQQcxTXV9lChoBmgJaA9DCInuWdcoSHJAlIaUUpRoFUvJaBZHQJ6xYJ3PiUB1fZQoaAZoCWgPQwhl3qrrEBhzQJSGlFKUaBVL1GgWR0CesXdcjZ+QdX2UKGgGaAloD0MIOutTjsnBcUCUhpRSlGgVS7loFkdAnrGLf+CK8HV9lChoBmgJaA9DCCNqos9HEXFAlIaUUpRoFUu2aBZHQJ6xoPrfLs91fZQoaAZoCWgPQwjjb3uCRLtwQJSGlFKUaBVLyWgWR0CesdbpeNT+dX2UKGgGaAloD0MIEw8om/L6c0CUhpRSlGgVS8doFkdAnrHiu+yquXV9lChoBmgJaA9DCPz/OGECxnJAlIaUUpRoFUu3aBZHQJ6x9pmEoOR1fZQoaAZoCWgPQwgGuCBb1nhzQJSGlFKUaBVLymgWR0Cesjl/YraudX2UKGgGaAloD0MIajF4mPaMc0CUhpRSlGgVS9loFkdAnrI4f0VafXV9lChoBmgJaA9DCKfOo+I/OHBAlIaUUpRoFUu2aBZHQJ6yNv863iJ1fZQoaAZoCWgPQwjrcd9q3WlwQJSGlFKUaBVLxmgWR0Cesk67/XGwdX2UKGgGaAloD0MIacai6awockCUhpRSlGgVS8loFkdAnrJaqfe1r3V9lChoBmgJaA9DCEJ8YMd/QHJAlIaUUpRoFUuuaBZHQJ6yZKjBVMp1fZQoaAZoCWgPQwj7srRTM2dyQJSGlFKUaBVLyGgWR0CesmLVFx4qdX2UKGgGaAloD0MI3c8pyE/Rb0CUhpRSlGgVS6RoFkdAnrKjhLoOhHV9lChoBmgJaA9DCDSfc7frZ3FAlIaUUpRoFUvOaBZHQJ6y1/y5I6N1fZQoaAZoCWgPQwg6V5QSQjRwQJSGlFKUaBVLtmgWR0Cesv4yoGY8dX2UKGgGaAloD0MIM4l6waeJbkCUhpRSlGgVS9BoFkdAnrMfyCnP3XV9lChoBmgJaA9DCB+6oL6lfXNAlIaUUpRoFUvBaBZHQJ6zHGDL8rJ1fZQoaAZoCWgPQwiX5lYI649zQJSGlFKUaBVLw2gWR0Ces0nh86V/dX2UKGgGaAloD0MIGR2QhD1ackCUhpRSlGgVS6doFkdAnrNUnCwbEXV9lChoBmgJaA9DCIVE2sYfE3NAlIaUUpRoFUu6aBZHQJ6zZxp+MIh1fZQoaAZoCWgPQwgHKXgKuTt0QJSGlFKUaBVL8mgWR0Ces3kyULUkdX2UKGgGaAloD0MIelG7X8XwcECUhpRSlGgVS7doFkdAnrOC1uzhP3V9lChoBmgJaA9DCABw7NmzmHJAlIaUUpRoFUvVaBZHQJ6zyZgG8mN1fZQoaAZoCWgPQwisAyDual9zQJSGlFKUaBVLyWgWR0CetAY/Vy3kdX2UKGgGaAloD0MIGXYYkz7CckCUhpRSlGgVS7BoFkdAnrReXE61cHV9lChoBmgJaA9DCBjNyvbhbHBAlIaUUpRoFUu7aBZHQJ60dU3n6mB1fZQoaAZoCWgPQwiN1HsqpyVPQJSGlFKUaBVLfGgWR0CetKfXf642dX2UKGgGaAloD0MIy/J1Gf5UcUCUhpRSlGgVS75oFkdAnrU2MXJo03V9lChoBmgJaA9DCM1c4PJYx3BAlIaUUpRoFUuqaBZHQJ61WYNRWLh1fZQoaAZoCWgPQwiuEFZjSdBxQJSGlFKUaBVLzGgWR0CetXHyVfNSdX2UKGgGaAloD0MIls/yPLjpc0CUhpRSlGgVS75oFkdAnrX7Zi/fwnV9lChoBmgJaA9DCOCgvfp4LnFAlIaUUpRoFUuyaBZHQJ62B6C17Y11fZQoaAZoCWgPQwh8X1yq0rdxQJSGlFKUaBVLt2gWR0Ceth3Td+G5dX2UKGgGaAloD0MIG2MnvMQMcECUhpRSlGgVS7xoFkdAnrYncDbJwXV9lChoBmgJaA9DCJD0aRU9X3FAlIaUUpRoFUuoaBZHQJ62PZJ04ip1fZQoaAZoCWgPQwjWx0Pf3YtzQJSGlFKUaBVL2mgWR0CetlqagElmdX2UKGgGaAloD0MIG2K85pXWc0CUhpRSlGgVS7hoFkdAnrZaG+K0lnV9lChoBmgJaA9DCOkrSDPWbHBAlIaUUpRoFUu6aBZHQJ62cD7qIJt1fZQoaAZoCWgPQwhJERlWsVdzQJSGlFKUaBVLw2gWR0Cetsc8kleGdX2UKGgGaAloD0MIMxr5vKJqcUCUhpRSlGgVS91oFkdAnrbc/+sHSnV9lChoBmgJaA9DCKz9ne3RuXFAlIaUUpRoFUvRaBZHQJ625SP2f051fZQoaAZoCWgPQwhJ1uHoqs1xQJSGlFKUaBVLm2gWR0CetvDKoybhdX2UKGgGaAloD0MIg8MLIpKZcUCUhpRSlGgVS7NoFkdAnrcnbRF7U3V9lChoBmgJaA9DCPLOoQyVuHFAlIaUUpRoFUvIaBZHQJ63Mt29tdl1fZQoaAZoCWgPQwgAcy1agPtwQJSGlFKUaBVLxWgWR0Cet4C8OCoTdX2UKGgGaAloD0MIVTTW/s5/ckCUhpRSlGgVS7hoFkdAnreaY3Ns33V9lChoBmgJaA9DCG/Vdajm1HJAlIaUUpRoFUvHaBZHQJ63p2Qnx8V1fZQoaAZoCWgPQwjNBS6PdTd0QJSGlFKUaBVL5mgWR0Cet7DBMzuXdX2UKGgGaAloD0MIRUjdzv6ncUCUhpRSlGgVS85oFkdAnrfEHIIWxnV9lChoBmgJaA9DCPOv5ZUrNnFAlIaUUpRoFUvFaBZHQJ630nRb8m91fZQoaAZoCWgPQwjOcW4TLrBxQJSGlFKUaBVLw2gWR0CeuAy925hCdX2UKGgGaAloD0MI7nvUX68IckCUhpRSlGgVS6poFkdAnrhRpQDV6XV9lChoBmgJaA9DCMuCiT9K0HNAlIaUUpRoFUvdaBZHQJ64cx9G7SR1fZQoaAZoCWgPQwjerwJ8t7VyQJSGlFKUaBVLyGgWR0CeuJ5jH4oJdX2UKGgGaAloD0MI4xdeSTJHckCUhpRSlGgVS6poFkdAnrimb1AZ9HV9lChoBmgJaA9DCOChKNAnXnJAlIaUUpRoFUvIaBZHQJ649xEORT11fZQoaAZoCWgPQwjdJXFWhKJyQJSGlFKUaBVLumgWR0CeuT/3WWhRdX2UKGgGaAloD0MIEf+wpYc8dECUhpRSlGgVS9toFkdAnrlm6f8Mu3V9lChoBmgJaA9DCH2utmL/63FAlIaUUpRoFUvAaBZHQJ65ZhH9WIZ1fZQoaAZoCWgPQwgRx7q4DdNzQJSGlFKUaBVL3GgWR0CeuZ+qioKldX2UKGgGaAloD0MI5PT1fA1tckCUhpRSlGgVS9loFkdAnrmeDOC5E3V9lChoBmgJaA9DCJpd91akIXJAlIaUUpRoFUuvaBZHQJ65q9qUNa11fZQoaAZoCWgPQwg8+l+uhbVxQJSGlFKUaBVLsmgWR0CeubTI/7iydX2UKGgGaAloD0MI6lxRSkhPc0CUhpRSlGgVS7poFkdAnroRT4tYjnV9lChoBmgJaA9DCLN+MzFdEXNAlIaUUpRoFUvVaBZHQJ66GUQkHD91fZQoaAZoCWgPQwjbvkf9dTxyQJSGlFKUaBVLyWgWR0CeuhiS7oStdX2UKGgGaAloD0MIr5emCPBXcUCUhpRSlGgVS7hoFkdAnromqxTsIHV9lChoBmgJaA9DCKVrJt/s0XFAlIaUUpRoFUuzaBZHQJ66cu/UONJ1fZQoaAZoCWgPQwhYVpqUAn5xQJSGlFKUaBVLv2gWR0CeunOJcgQpdX2UKGgGaAloD0MIcvkP6ffUckCUhpRSlGgVS8poFkdAnrp/OIInjXV9lChoBmgJaA9DCHiAJy1cPW9AlIaUUpRoFUvgaBZHQJ66n7VJ+Uh1fZQoaAZoCWgPQwjQQgJG1+JxQJSGlFKUaBVLvWgWR0CeuquTRplCdX2UKGgGaAloD0MIk+F4PsM5ckCUhpRSlGgVS6hoFkdAnrqrgsK9f3V9lChoBmgJaA9DCIyFIXL6SHFAlIaUUpRoFUvdaBZHQJ66tYaHbh51fZQoaAZoCWgPQwjQmh9/6TpyQJSGlFKUaBVL0mgWR0CeusLDAJswdX2UKGgGaAloD0MInu+nxku7cUCUhpRSlGgVS6loFkdAnrrARsdkrnV9lChoBmgJaA9DCLdCWI0lpHBAlIaUUpRoFUvQaBZHQJ66/QKKHfx1fZQoaAZoCWgPQwj8cfvlU0FzQJSGlFKUaBVL0mgWR0CeuzA80UGndX2UKGgGaAloD0MIJEVkWEUvc0CUhpRSlGgVS7poFkdAnrs6UiY9gXV9lChoBmgJaA9DCEYKZeErpXNAlIaUUpRoFUvAaBZHQJ67Rjd56dF1fZQoaAZoCWgPQwiymxn9KAByQJSGlFKUaBVL4mgWR0Ceu1bblA/tdX2UKGgGaAloD0MIeLRxxFq7cECUhpRSlGgVS8hoFkdAnrtzfBN21XV9lChoBmgJaA9DCNpWs8548HJAlIaUUpRoFUvGaBZHQJ67pkjHGS91fZQoaAZoCWgPQwg7HF2lO+VwQJSGlFKUaBVLw2gWR0Ceu6Rc/t6YdX2UKGgGaAloD0MIDD1i9JwycUCUhpRSlGgVS69oFkdAnrvk9IPK+3V9lChoBmgJaA9DCCFcAYX6AXNAlIaUUpRoFUvXaBZHQJ68HmSyMUB1fZQoaAZoCWgPQwgQ5+EEprhwQJSGlFKUaBVLuWgWR0CevDDVH4GmdX2UKGgGaAloD0MIIhlybH0SckCUhpRSlGgVS8xoFkdAnrxYR7JGOXV9lChoBmgJaA9DCO4jtyYd1HJAlIaUUpRoFUuraBZHQJ68jMHKOkt1fZQoaAZoCWgPQwgmbarukZtvQJSGlFKUaBVLrGgWR0CevKqz7di2dX2UKGgGaAloD0MIZOjYQWWHdECUhpRSlGgVS75oFkdAnryoFeOXFHV9lChoBmgJaA9DCGnjiLX45nNAlIaUUpRoFUvRaBZHQJ68x2NedCp1ZS4="
77
+ },
78
+ "ep_success_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
81
+ },
82
+ "_n_updates": 310,
83
+ "n_steps": 1024,
84
+ "gamma": 0.999,
85
+ "gae_lambda": 0.98,
86
+ "ent_coef": 0.01,
87
+ "vf_coef": 0.5,
88
+ "max_grad_norm": 0.5,
89
+ "batch_size": 64,
90
+ "n_epochs": 5,
91
+ "clip_range": {
92
+ ":type:": "<class 'function'>",
93
+ ":serialized:": "gAWVHwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMdi9Vc2Vycy9wYXVsLy5weWVudi92ZXJzaW9ucy8zLjEwLjgvZW52cy9tbC1zdHVmZi0zXzEwXzgvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuBQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHYvVXNlcnMvcGF1bC8ucHllbnYvdmVyc2lvbnMvMy4xMC44L2VudnMvbWwtc3R1ZmYtM18xMF84L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
94
+ },
95
+ "clip_range_vf": null,
96
+ "normalize_advantage": true,
97
+ "target_kl": null
98
+ }
ppo-LunarLander-v2-paulmest-2022-12-29_21-00-57-4000000/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de45ce4922dc98635b7df18715709c06eed4f715175bd4a74c9f61ebd4c5cd0e
3
+ size 87545
ppo-LunarLander-v2-paulmest-2022-12-29_21-00-57-4000000/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:274afea0f8dcf9c233840f67b9bb2142bd3f802c49896cf815c38e02d69f8ba7
3
+ size 43265
ppo-LunarLander-v2-paulmest-2022-12-29_21-00-57-4000000/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-paulmest-2022-12-29_21-00-57-4000000/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: macOS-13.1-arm64-arm-64bit Darwin Kernel Version 22.2.0: Fri Nov 11 02:03:51 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T6000
2
+ Python: 3.10.8
3
+ Stable-Baselines3: 2.0.0a0
4
+ PyTorch: 1.13.0
5
+ GPU Enabled: False
6
+ Numpy: 1.23.5
7
+ Gym: 0.27.0
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 274.77245631693637, "std_reward": 21.310232095583988, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-29T09:27:58.905237"}
 
1
+ {"mean_reward": 289.014011458534, "std_reward": 19.701158855758905, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-30T00:17:45.549287"}