PaulMest commited on
Commit
f58de5c
1 Parent(s): c075a47

Upload PPO LunarLander-v2 trained agent 4M

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 284.12 +/- 17.03
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 274.77 +/- 21.31
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0f6102fca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0f6102fd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0f6102fdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0f6102fe50>", "_build": "<function ActorCriticPolicy._build at 0x7f0f6102fee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0f6102ff70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0f61034040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0f610340d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0f61034160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0f610341f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0f61034280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0f6102c4b0>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 2000896, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672281195535001986, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAEBwKD6Hhyg+480gvtkelL42CW09uxt2vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaXIxBpYIc0CUhpRSlIwBbJRL24wBdJRHQLG7Ls8gZCR1fZQoaAZoCWgPQwi54uKo3FRMQJSGlFKUaBVLzmgWR0Cxu4XHmzSkdX2UKGgGaAloD0MIBMb6BiaXT0CUhpRSlGgVS6hoFkdAsbvMejmCAnV9lChoBmgJaA9DCAqGcw2zDXFAlIaUUpRoFUv4aBZHQLG8jrlNlAh1fZQoaAZoCWgPQwhtyhXe5UBwQJSGlFKUaBVL1GgWR0CxvO1Drqt6dX2UKGgGaAloD0MI/3bZr7uIcECUhpRSlGgVS/VoFkdAsb1XHvMKTnV9lChoBmgJaA9DCHZTymtlNXFAlIaUUpRoFUvgaBZHQLG9stxdY4h1fZQoaAZoCWgPQwhgArfu5mdIQJSGlFKUaBVLumgWR0Cxvlza4+bFdX2UKGgGaAloD0MIQDIdOj1tbkCUhpRSlGgVS+RoFkdAsb67d+G47XV9lChoBmgJaA9DCFlS7j7H529AlIaUUpRoFUvqaBZHQLG/HbKRuCR1fZQoaAZoCWgPQwgy6e+l8MJwQJSGlFKUaBVL3mgWR0Cxv3q6J66bdX2UKGgGaAloD0MISl6dY0ANb0CUhpRSlGgVS+FoFkdAsb/WsA/9pHV9lChoBmgJaA9DCJ4KuOf5VztAlIaUUpRoFUusaBZHQLHAck7wKBx1fZQoaAZoCWgPQwh6w33kViNxQJSGlFKUaBVL+GgWR0CxwN0SAYpEdX2UKGgGaAloD0MI4QfnU8dWR0CUhpRSlGgVS6FoFkdAscEdEkSmInV9lChoBmgJaA9DCA2reCNzzWdAlIaUUpRoFU3oA2gWR0Cxw49pudf+dX2UKGgGaAloD0MIWMfxQ6WbTECUhpRSlGgVS7hoFkdAscPVfKISDnV9lChoBmgJaA9DCJfFxOajaXBAlIaUUpRoFUvlaBZHQLHENQuEmIF1fZQoaAZoCWgPQwiGrdnKi4txQJSGlFKUaBVL4WgWR0CxxOcLv1DjdX2UKGgGaAloD0MIX0ax3NJLckCUhpRSlGgVS/1oFkdAscVVhoduHnV9lChoBmgJaA9DCGGm7V/ZaGVAlIaUUpRoFU3oA2gWR0Cxx8ptix3WdX2UKGgGaAloD0MIt5bJcLy1cECUhpRSlGgVS/5oFkdAscg2DYh+v3V9lChoBmgJaA9DCJg1scBXLEpAlIaUUpRoFUuaaBZHQLHIdXUYsNF1fZQoaAZoCWgPQwi5Fi1AGztyQJSGlFKUaBVNCAFoFkdAscjfACW/rXV9lChoBmgJaA9DCCHp0yq65nFAlIaUUpRoFUvMaBZHQLHJigflp491fZQoaAZoCWgPQwhkIM8uX4ZyQJSGlFKUaBVL4GgWR0CxyeNoN/e+dX2UKGgGaAloD0MIRzgteJHUcUCUhpRSlGgVS99oFkdAscpCPkq+anV9lChoBmgJaA9DCC+kw0MYFXBAlIaUUpRoFUvpaBZHQLHKo0aqCH11fZQoaAZoCWgPQwg/HvruFjNzQJSGlFKUaBVL0GgWR0Cxy1Q7T2FndX2UKGgGaAloD0MIO8WqQZjOb0CUhpRSlGgVS9loFkdAscur0e2d/nV9lChoBmgJaA9DCA1RhT+DcnBAlIaUUpRoFUvqaBZHQLHMEJaaCtl1fZQoaAZoCWgPQwgU6X5OAT5xQJSGlFKUaBVNBAFoFkdAscyCOGTLXHV9lChoBmgJaA9DCNi7P96rOXFAlIaUUpRoFUvcaBZHQLHM3KTB68h1fZQoaAZoCWgPQwgkYkokEf5wQJSGlFKUaBVL02gWR0CxzY+938oAdX2UKGgGaAloD0MInbgcr8BNcECUhpRSlGgVS+BoFkdAsc3qx2SuAHV9lChoBmgJaA9DCJOOcjAbk25AlIaUUpRoFUvgaBZHQLHOSdzGPxR1fZQoaAZoCWgPQwjb/SrA99ZwQJSGlFKUaBVL+GgWR0CxzrI9C/oJdX2UKGgGaAloD0MIxw2/m25gcECUhpRSlGgVS+xoFkdAsc9s+JP69HV9lChoBmgJaA9DCLwGfemtgXBAlIaUUpRoFUvgaBZHQLHPyAkcCHR1fZQoaAZoCWgPQwgh5/1/3CdwQJSGlFKUaBVL7GgWR0Cx0CryH2ytdX2UKGgGaAloD0MIpIy4ADQecUCUhpRSlGgVS8BoFkdAsdB7hLoOhHV9lChoBmgJaA9DCMrAAS3da3FAlIaUUpRoFUvLaBZHQLHQz/Tb3491fZQoaAZoCWgPQwhmaDwRxOVkQJSGlFKUaBVN6ANoFkdAsdMwLG7z1HV9lChoBmgJaA9DCMpwPJ+BEnJAlIaUUpRoFUvdaBZHQLHT6vGIbfh1fZQoaAZoCWgPQwjyKJXwRO5xQJSGlFKUaBVNBwFoFkdAsdRcFPi1iXV9lChoBmgJaA9DCJT43Al2UHJAlIaUUpRoFUvdaBZHQLHUuiI+GGp1fZQoaAZoCWgPQwjaBBiWfyZxQJSGlFKUaBVL/2gWR0Cx1SNgKF7EdX2UKGgGaAloD0MIOey+Y3jAPkCUhpRSlGgVS8FoFkdAsdVybZvkzXV9lChoBmgJaA9DCAHaVrPOu3FAlIaUUpRoFUvPaBZHQLHWHHlwLmZ1fZQoaAZoCWgPQwisOxbbpMI/QJSGlFKUaBVLwGgWR0Cx1m4Lw4KhdX2UKGgGaAloD0MIC+vGu+OHcECUhpRSlGgVTQMBaBZHQLHW3OR1X/51fZQoaAZoCWgPQwiMgXUcv81iQJSGlFKUaBVN6ANoFkdAsdm+nzg/DHV9lChoBmgJaA9DCCuIga49/3FAlIaUUpRoFUv2aBZHQLHaJRU3n6l1fZQoaAZoCWgPQwi+2ebG9DVxQJSGlFKUaBVL2WgWR0Cx2tauKXOXdX2UKGgGaAloD0MIUdmwpvIMcUCUhpRSlGgVS9toFkdAsdsxEx7AtXV9lChoBmgJaA9DCNf7jXbchXJAlIaUUpRoFUvraBZHQLHbm3z+WGB1fZQoaAZoCWgPQwjOM/Yl26ZxQJSGlFKUaBVL+mgWR0Cx3AX4XXRPdX2UKGgGaAloD0MIU1vqIO+ZcUCUhpRSlGgVS+loFkdAsdxnmdRR/HV9lChoBmgJaA9DCKPmq+TjF3JAlIaUUpRoFUv4aBZHQLHdLjLSuyN1fZQoaAZoCWgPQwhEpKZdjPpwQJSGlFKUaBVL82gWR0Cx3ZIYrJ8wdX2UKGgGaAloD0MIHVn5ZTBMckCUhpRSlGgVS+RoFkdAsd3qzhP0qnV9lChoBmgJaA9DCLFNKhpr03BAlIaUUpRoFUvhaBZHQLHeQXaJyhl1fZQoaAZoCWgPQwhSCrq95BJyQJSGlFKUaBVL5WgWR0Cx3vrRBu4xdX2UKGgGaAloD0MIxQQ1fIt7b0CUhpRSlGgVS/loFkdAsd9lWeYlY3V9lChoBmgJaA9DCF+y8WDL6XBAlIaUUpRoFU0AAWgWR0Cx39Awwj+rdX2UKGgGaAloD0MIj3Iwm4BWZUCUhpRSlGgVTegDaBZHQLHid6JqIrR1fZQoaAZoCWgPQwjR6A5iZwBVQJSGlFKUaBVLoGgWR0Cx4rrtAs06dX2UKGgGaAloD0MIYOemzfiCcECUhpRSlGgVS+9oFkdAseMYmqo60nV9lChoBmgJaA9DCOW0p+Sc3W9AlIaUUpRoFUvkaBZHQLHj1TP0I1N1fZQoaAZoCWgPQwiRK/UsCNBwQJSGlFKUaBVLz2gWR0Cx5Cj9KmKqdX2UKGgGaAloD0MIHy457pTEZkCUhpRSlGgVTegDaBZHQLHmrE3bVSZ1fZQoaAZoCWgPQwj9hR4xetFQQJSGlFKUaBVLn2gWR0Cx5u2oNutPdX2UKGgGaAloD0MIVb38TpMFcUCUhpRSlGgVTQkBaBZHQLHnVa0x/NJ1fZQoaAZoCWgPQwg75dGN8AhwQJSGlFKUaBVL8mgWR0Cx6BomG/N8dX2UKGgGaAloD0MIZJXSM73RcECUhpRSlGgVTQYBaBZHQLHohgOSW7h1fZQoaAZoCWgPQwhlpUkpaHJwQJSGlFKUaBVL2WgWR0Cx6OFVghKUdX2UKGgGaAloD0MILjcY6rCecECUhpRSlGgVS/1oFkdAselJXU6PsHV9lChoBmgJaA9DCDykGCDRV3NAlIaUUpRoFUvuaBZHQLHprxgAp8Z1fZQoaAZoCWgPQwgwSzs1F7VwQJSGlFKUaBVNCgFoFkdAsep2V/tpmHV9lChoBmgJaA9DCFzmdFlMK1NAlIaUUpRoFUudaBZHQLHquGSZBs11fZQoaAZoCWgPQwgJNq5/F+dxQJSGlFKUaBVLzGgWR0Cx6w2RvFWGdX2UKGgGaAloD0MIOpLLf0inQECUhpRSlGgVS6JoFkdAsetJIRRMvnV9lChoBmgJaA9DCANckC2L23JAlIaUUpRoFUv/aBZHQLHrt6OHWSV1fZQoaAZoCWgPQwg6OxkcJexuQJSGlFKUaBVL2WgWR0Cx7IxUJfICdX2UKGgGaAloD0MImWclrXgXb0CUhpRSlGgVS9FoFkdAse0RyMkyDnV9lChoBmgJaA9DCPw2xHjNK0tAlIaUUpRoFUvLaBZHQLHtmj4Hoox1fZQoaAZoCWgPQwgMB0KyABJuQJSGlFKUaBVL2mgWR0Cx7huHWSU1dX2UKGgGaAloD0MIPBIvT+eEcECUhpRSlGgVTQ0BaBZHQLHveTz/ZNB1fZQoaAZoCWgPQwjwhjQqsLpwQJSGlFKUaBVNAQFoFkdAsfAaA3DNyHV9lChoBmgJaA9DCHvXoC99P3FAlIaUUpRoFUvkaBZHQLHwqhpQDV91fZQoaAZoCWgPQwg01v7OtjpyQJSGlFKUaBVL1mgWR0Cx8TmR/3FldX2UKGgGaAloD0MIboeGxShmb0CUhpRSlGgVS+doFkdAsfHMkVvddnV9lChoBmgJaA9DCET9LmyNqHFAlIaUUpRoFUvWaBZHQLHy8TNt65Z1fZQoaAZoCWgPQwjdskP8Q1lyQJSGlFKUaBVNGQFoFkdAsfO4QiA2AHV9lChoBmgJaA9DCPZefNGenHFAlIaUUpRoFUvlaBZHQLH0TzqrzXl1fZQoaAZoCWgPQwgq5Eo9CzRPQJSGlFKUaBVLw2gWR0Cx9MpFocrBdX2UKGgGaAloD0MIMQbWcbzZcECUhpRSlGgVS9poFkdAsfW82/BWP3V9lChoBmgJaA9DCM5twr1yxnFAlIaUUpRoFUvXaBZHQLH2En13+uN1fZQoaAZoCWgPQwjTLqaZ7nVxQJSGlFKUaBVNVwFoFkdAsfaz7aZhKHV9lChoBmgJaA9DCA0Zj1KJg21AlIaUUpRoFUvpaBZHQLH3EVLSNOx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7816, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f396ff99ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f396ff99d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f396ff99dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f396ff99e50>", "_build": "<function ActorCriticPolicy._build at 0x7f396ff99ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f396ff99f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f396ff9e040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f396ff9e0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f396ff9e160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f396ff9e1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f396ff9e280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f396ff98540>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 4000768, "_total_timesteps": 4000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672296994535136696, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJpYu71sjoG7hQE4POMjlDxr+tC8AwZ9PQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00019199999999996997, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImggbnh5vcUCUhpRSlIwBbJRLwowBdJRHQMFprJpeu3d1fZQoaAZoCWgPQwhPeXQj7H1yQJSGlFKUaBVLumgWR0DBadbZamoBdX2UKGgGaAloD0MIcAZ/v5idcUCUhpRSlGgVS/FoFkdAwWoLM2WIGnV9lChoBmgJaA9DCEOs/ggDS3JAlIaUUpRoFUvpaBZHQMFqbHFglWx1fZQoaAZoCWgPQwi8eD9uv+1uQJSGlFKUaBVL/2gWR0DBaqUmY0EYdX2UKGgGaAloD0MIIa0x6ASfcUCUhpRSlGgVS9VoFkdAwWrSsH0K7nV9lChoBmgJaA9DCHxkc9U8tnBAlIaUUpRoFUvaaBZHQMFrArftQbd1fZQoaAZoCWgPQwh0toDQujFyQJSGlFKUaBVL0GgWR0DBazEM5OrRdX2UKGgGaAloD0MIs7PonQr7cECUhpRSlGgVS7xoFkdAwWuM5LAYYXV9lChoBmgJaA9DCISB597DiHFAlIaUUpRoFUvZaBZHQMFru2exwAF1fZQoaAZoCWgPQwgGuvYFtD1yQJSGlFKUaBVNHgFoFkdAwWv2xKxs23V9lChoBmgJaA9DCMvz4O4s8G9AlIaUUpRoFUu7aBZHQMFsHnFHavl1fZQoaAZoCWgPQwgH0VrR5kdyQJSGlFKUaBVLxWgWR0DBbEcUbkwOdX2UKGgGaAloD0MIL8N/ugGCbUCUhpRSlGgVS8doFkdAwWyiK8cuJ3V9lChoBmgJaA9DCBsPttitgXFAlIaUUpRoFUvlaBZHQMFs1INmUW51fZQoaAZoCWgPQwjKGvUQDctyQJSGlFKUaBVL2mgWR0DBbP9jI7vHdX2UKGgGaAloD0MId9fZkL+4cUCUhpRSlGgVTZwBaBZHQMFtYaDXe3x1fZQoaAZoCWgPQwgdAHFXr15wQJSGlFKUaBVLu2gWR0DBbbbu+h4/dX2UKGgGaAloD0MImG2nrZH3cUCUhpRSlGgVS+VoFkdAwW3o9pyp73V9lChoBmgJaA9DCCU+d4J9GXNAlIaUUpRoFUvjaBZHQMFuGoSL61t1fZQoaAZoCWgPQwic24R75aZxQJSGlFKUaBVL12gWR0DBbkY7Njb0dX2UKGgGaAloD0MIaVTgZFuVckCUhpRSlGgVTQgBaBZHQMFurnezlcR1fZQoaAZoCWgPQwhVv9L58D1yQJSGlFKUaBVL3mgWR0DBbuBn+Q2ddX2UKGgGaAloD0MICWtj7ITRcUCUhpRSlGgVS75oFkdAwW8IaqjrRnV9lChoBmgJaA9DCK2Imuizz3FAlIaUUpRoFUvcaBZHQMFvOnf/FR51fZQoaAZoCWgPQwiSdw5lqKZBQJSGlFKUaBVL1GgWR0DBb2YTXarWdX2UKGgGaAloD0MIDr+bbtlDcUCUhpRSlGgVS+BoFkdAwW/EPcSGrXV9lChoBmgJaA9DCKqB5nMuAnRAlIaUUpRoFUvTaBZHQMFv7n1WbPR1fZQoaAZoCWgPQwhvgm+avuVwQJSGlFKUaBVLvWgWR0DBcBY+0PYndX2UKGgGaAloD0MIB3x+GCHUckCUhpRSlGgVS8JoFkdAwXBDE2pAEHV9lChoBmgJaA9DCMSVs3dG7HFAlIaUUpRoFUv1aBZHQMFwebQ9ic51fZQoaAZoCWgPQwhm2ZPA5nxvQJSGlFKUaBVLxGgWR0DBcNeSEDhcdX2UKGgGaAloD0MIajS5GANfQ0CUhpRSlGgVS9RoFkdAwXEkuIRAbHV9lChoBmgJaA9DCGItPgWAUnNAlIaUUpRoFUvWaBZHQMFxcmwiaAp1fZQoaAZoCWgPQwicpPljWmtEQJSGlFKUaBVL1WgWR0DBcbgKx9ofdX2UKGgGaAloD0MIuVD513IVckCUhpRSlGgVS7loFkdAwXHzMB6rvXV9lChoBmgJaA9DCN7LfXIUtFBAlIaUUpRoFUvHaBZHQMFyfYwIt191fZQoaAZoCWgPQwghIcoX9BNxQJSGlFKUaBVL92gWR0DBcs49aEBbdX2UKGgGaAloD0MI8YRef5K0cUCUhpRSlGgVTUYBaBZHQMFzP8baRIV1fZQoaAZoCWgPQwit+IbCJ6txQJSGlFKUaBVLzGgWR0DBc4GJcgQpdX2UKGgGaAloD0MIveDTnDxScUCUhpRSlGgVS9FoFkdAwXQUwMYuTXV9lChoBmgJaA9DCOAruvWaDkJAlIaUUpRoFUuOaBZHQMF0SXEyckN1fZQoaAZoCWgPQwigGcQH9m5uQJSGlFKUaBVLx2gWR0DBdIer2g3+dX2UKGgGaAloD0MIkrOwpx3UcUCUhpRSlGgVS8FoFkdAwXTNAWzninV9lChoBmgJaA9DCK5/12cOVnJAlIaUUpRoFUvKaBZHQMF1A+De0ol1fZQoaAZoCWgPQwinlq31RYpwQJSGlFKUaBVLxmgWR0DBdVqgIyCWdX2UKGgGaAloD0MIByXMtP1tSECUhpRSlGgVS4RoFkdAwXV1yR0U5HV9lChoBmgJaA9DCF6EKcrlXXBAlIaUUpRoFUv9aBZHQMF1rLVe8f51fZQoaAZoCWgPQwhVaCCWzXdxQJSGlFKUaBVLy2gWR0DBddleWv8qdX2UKGgGaAloD0MI19zR/7LicECUhpRSlGgVS/5oFkdAwXYPhQ3xWnV9lChoBmgJaA9DCMDrM2d9mm5AlIaUUpRoFUvgaBZHQMF2cuIRAbB1fZQoaAZoCWgPQwiL3xRWqnRwQJSGlFKUaBVNAQFoFkdAwXardiUgS3V9lChoBmgJaA9DCJ91jZZD83JAlIaUUpRoFUvXaBZHQMF22JrULD11fZQoaAZoCWgPQwhj0Amhg5xwQJSGlFKUaBVLymgWR0DBdwHFglWwdX2UKGgGaAloD0MIE9TwLew2c0CUhpRSlGgVTRYBaBZHQMF3QZf2K2t1fZQoaAZoCWgPQwj7JHfYhBZwQJSGlFKUaBVLw2gWR0DBd5ue8PFvdX2UKGgGaAloD0MIC5sBLsgUckCUhpRSlGgVTSYBaBZHQMF3258a4tp1fZQoaAZoCWgPQwiTN8DMd5FyQJSGlFKUaBVNxwJoFkdAwXi9AeJYT3V9lChoBmgJaA9DCGsqi8KuEm5AlIaUUpRoFUvUaBZHQMF46r/sE7p1fZQoaAZoCWgPQwhz1qccEzJxQJSGlFKUaBVLyGgWR0DBeRMUj9n9dX2UKGgGaAloD0MIG2fTEYAWcUCUhpRSlGgVS79oFkdAwXk6H+Idl3V9lChoBmgJaA9DCPgcWI4Qd3BAlIaUUpRoFUvlaBZHQMF5aHuAqd91fZQoaAZoCWgPQwjytWeWBOpKQJSGlFKUaBVLlGgWR0DBea+5tm+TdX2UKGgGaAloD0MIon+CixWjbkCUhpRSlGgVS+RoFkdAwXnfkjHGTHV9lChoBmgJaA9DCMv1tplKJXFAlIaUUpRoFUvCaBZHQMF6CMIu5Bl1fZQoaAZoCWgPQwgdBYiC2alyQJSGlFKUaBVNtwFoFkdAwXpssBhhIHV9lChoBmgJaA9DCDy858Cy03JAlIaUUpRoFU0GAWgWR0DBetMFdLQHdX2UKGgGaAloD0MII8DpXTw0cECUhpRSlGgVS8NoFkdAwXr9Vo6CDnV9lChoBmgJaA9DCJCkpIchj2VAlIaUUpRoFU3oA2gWR0DBfB21jRUndX2UKGgGaAloD0MIPX5v09/KcECUhpRSlGgVS+9oFkdAwXxXKdxyXHV9lChoBmgJaA9DCJt1xvfFP2NAlIaUUpRoFU3oA2gWR0DBfZK2jO9ndX2UKGgGaAloD0MIApzexfv1SkCUhpRSlGgVS4xoFkdAwX2wpRXOnnV9lChoBmgJaA9DCMsUcxD0OHJAlIaUUpRoFUvUaBZHQMF93Po/zJ91fZQoaAZoCWgPQwgRqz/C8GtxQJSGlFKUaBVLtGgWR0DBfjBvWH1wdX2UKGgGaAloD0MIOEvJctI6cUCUhpRSlGgVS71oFkdAwX5Y6OHWSXV9lChoBmgJaA9DCLO3lPMFMHJAlIaUUpRoFU0uAWgWR0DBfp9Tzd1udX2UKGgGaAloD0MIz4HlCJlzcECUhpRSlGgVS+5oFkdAwX7SyLQ5WHV9lChoBmgJaA9DCNaqXRPSGnFAlIaUUpRoFUvJaBZHQMF/KsLncL11fZQoaAZoCWgPQwjbv7LSZOFxQJSGlFKUaBVLv2gWR0DBf1PfGdZrdX2UKGgGaAloD0MIMxtkklFcckCUhpRSlGgVS89oFkdAwX+CTJyQxXV9lChoBmgJaA9DCBy0Vx+PVHFAlIaUUpRoFUvNaBZHQMF/sBd+ocd1fZQoaAZoCWgPQwjXUGov4vhxQJSGlFKUaBVNFQFoFkdAwX/wsWfseHV9lChoBmgJaA9DCCaN0Tpqy3JAlIaUUpRoFU0MAWgWR0DBgGDTF2mpdX2UKGgGaAloD0MInkDYKRaOcECUhpRSlGgVS8BoFkdAwYCK1E3KjnV9lChoBmgJaA9DCIE+kSdJWnFAlIaUUpRoFUvEaBZHQMGAtbkGRmt1fZQoaAZoCWgPQwhtcCL69UdxQJSGlFKUaBVL0mgWR0DBgOWNvOyFdX2UKGgGaAloD0MIk8fT8gM/cUCUhpRSlGgVS8JoFkdAwYEP2oNutXV9lChoBmgJaA9DCDv/dtkv7nBAlIaUUpRoFUvNaBZHQMGBZ9cbBGh1fZQoaAZoCWgPQwjMYfcdA1NwQJSGlFKUaBVLxWgWR0DBgZYqCpWFdX2UKGgGaAloD0MIPj4hOy8Jc0CUhpRSlGgVS9ZoFkdAwYHFppvgnHV9lChoBmgJaA9DCIGSAgvghXBAlIaUUpRoFU0EAWgWR0DBggN7Uoa2dX2UKGgGaAloD0MIuwuUFNh0bkCUhpRSlGgVS9RoFkdAwYIw+sYEXHV9lChoBmgJaA9DCJFkVu9wz3BAlIaUUpRoFUvkaBZHQMGCjppFkQR1fZQoaAZoCWgPQwhmFqHYSm9yQJSGlFKUaBVL9mgWR0DBgsQN5MURdX2UKGgGaAloD0MINLxZg/doc0CUhpRSlGgVTRoBaBZHQMGDAWhIvrZ1fZQoaAZoCWgPQwjnVZ3VAhJxQJSGlFKUaBVL+WgWR0DBgzOAoXsPdX2UKGgGaAloD0MIbMzriEOubkCUhpRSlGgVS9poFkdAwYONs6aLGnV9lChoBmgJaA9DCKUV31B4U3BAlIaUUpRoFUvSaBZHQMGDvAd4mkZ1fZQoaAZoCWgPQwiw6NZrejNQQJSGlFKUaBVL9mgWR0DBg/A3aSLZdX2UKGgGaAloD0MIZYo5CDqBc0CUhpRSlGgVS9VoFkdAwYQcaAFxGXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 15708, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2-paulmest-4M.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ac13694681eef67bbdf132faf23caa87fb92ff29c7b85e3eac56fab1e8e405d
3
+ size 146453
ppo-LunarLander-v2-paulmest-4M/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2-paulmest-4M/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f396ff99ca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f396ff99d30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f396ff99dc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f396ff99e50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f396ff99ee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f396ff99f70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f396ff9e040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f396ff9e0d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f396ff9e160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f396ff9e1f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f396ff9e280>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f396ff98540>"
20
+ },
21
+ "verbose": 0,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 4000768,
46
+ "_total_timesteps": 4000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1672296994535136696,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJpYu71sjoG7hQE4POMjlDxr+tC8AwZ9PQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.00019199999999996997,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVLhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImggbnh5vcUCUhpRSlIwBbJRLwowBdJRHQMFprJpeu3d1fZQoaAZoCWgPQwhPeXQj7H1yQJSGlFKUaBVLumgWR0DBadbZamoBdX2UKGgGaAloD0MIcAZ/v5idcUCUhpRSlGgVS/FoFkdAwWoLM2WIGnV9lChoBmgJaA9DCEOs/ggDS3JAlIaUUpRoFUvpaBZHQMFqbHFglWx1fZQoaAZoCWgPQwi8eD9uv+1uQJSGlFKUaBVL/2gWR0DBaqUmY0EYdX2UKGgGaAloD0MIIa0x6ASfcUCUhpRSlGgVS9VoFkdAwWrSsH0K7nV9lChoBmgJaA9DCHxkc9U8tnBAlIaUUpRoFUvaaBZHQMFrArftQbd1fZQoaAZoCWgPQwh0toDQujFyQJSGlFKUaBVL0GgWR0DBazEM5OrRdX2UKGgGaAloD0MIs7PonQr7cECUhpRSlGgVS7xoFkdAwWuM5LAYYXV9lChoBmgJaA9DCISB597DiHFAlIaUUpRoFUvZaBZHQMFru2exwAF1fZQoaAZoCWgPQwgGuvYFtD1yQJSGlFKUaBVNHgFoFkdAwWv2xKxs23V9lChoBmgJaA9DCMvz4O4s8G9AlIaUUpRoFUu7aBZHQMFsHnFHavl1fZQoaAZoCWgPQwgH0VrR5kdyQJSGlFKUaBVLxWgWR0DBbEcUbkwOdX2UKGgGaAloD0MIL8N/ugGCbUCUhpRSlGgVS8doFkdAwWyiK8cuJ3V9lChoBmgJaA9DCBsPttitgXFAlIaUUpRoFUvlaBZHQMFs1INmUW51fZQoaAZoCWgPQwjKGvUQDctyQJSGlFKUaBVL2mgWR0DBbP9jI7vHdX2UKGgGaAloD0MId9fZkL+4cUCUhpRSlGgVTZwBaBZHQMFtYaDXe3x1fZQoaAZoCWgPQwgdAHFXr15wQJSGlFKUaBVLu2gWR0DBbbbu+h4/dX2UKGgGaAloD0MImG2nrZH3cUCUhpRSlGgVS+VoFkdAwW3o9pyp73V9lChoBmgJaA9DCCU+d4J9GXNAlIaUUpRoFUvjaBZHQMFuGoSL61t1fZQoaAZoCWgPQwic24R75aZxQJSGlFKUaBVL12gWR0DBbkY7Njb0dX2UKGgGaAloD0MIaVTgZFuVckCUhpRSlGgVTQgBaBZHQMFurnezlcR1fZQoaAZoCWgPQwhVv9L58D1yQJSGlFKUaBVL3mgWR0DBbuBn+Q2ddX2UKGgGaAloD0MICWtj7ITRcUCUhpRSlGgVS75oFkdAwW8IaqjrRnV9lChoBmgJaA9DCK2Imuizz3FAlIaUUpRoFUvcaBZHQMFvOnf/FR51fZQoaAZoCWgPQwiSdw5lqKZBQJSGlFKUaBVL1GgWR0DBb2YTXarWdX2UKGgGaAloD0MIDr+bbtlDcUCUhpRSlGgVS+BoFkdAwW/EPcSGrXV9lChoBmgJaA9DCKqB5nMuAnRAlIaUUpRoFUvTaBZHQMFv7n1WbPR1fZQoaAZoCWgPQwhvgm+avuVwQJSGlFKUaBVLvWgWR0DBcBY+0PYndX2UKGgGaAloD0MIB3x+GCHUckCUhpRSlGgVS8JoFkdAwXBDE2pAEHV9lChoBmgJaA9DCMSVs3dG7HFAlIaUUpRoFUv1aBZHQMFwebQ9ic51fZQoaAZoCWgPQwhm2ZPA5nxvQJSGlFKUaBVLxGgWR0DBcNeSEDhcdX2UKGgGaAloD0MIajS5GANfQ0CUhpRSlGgVS9RoFkdAwXEkuIRAbHV9lChoBmgJaA9DCGItPgWAUnNAlIaUUpRoFUvWaBZHQMFxcmwiaAp1fZQoaAZoCWgPQwicpPljWmtEQJSGlFKUaBVL1WgWR0DBcbgKx9ofdX2UKGgGaAloD0MIuVD513IVckCUhpRSlGgVS7loFkdAwXHzMB6rvXV9lChoBmgJaA9DCN7LfXIUtFBAlIaUUpRoFUvHaBZHQMFyfYwIt191fZQoaAZoCWgPQwghIcoX9BNxQJSGlFKUaBVL92gWR0DBcs49aEBbdX2UKGgGaAloD0MI8YRef5K0cUCUhpRSlGgVTUYBaBZHQMFzP8baRIV1fZQoaAZoCWgPQwit+IbCJ6txQJSGlFKUaBVLzGgWR0DBc4GJcgQpdX2UKGgGaAloD0MIveDTnDxScUCUhpRSlGgVS9FoFkdAwXQUwMYuTXV9lChoBmgJaA9DCOAruvWaDkJAlIaUUpRoFUuOaBZHQMF0SXEyckN1fZQoaAZoCWgPQwigGcQH9m5uQJSGlFKUaBVLx2gWR0DBdIer2g3+dX2UKGgGaAloD0MIkrOwpx3UcUCUhpRSlGgVS8FoFkdAwXTNAWzninV9lChoBmgJaA9DCK5/12cOVnJAlIaUUpRoFUvKaBZHQMF1A+De0ol1fZQoaAZoCWgPQwinlq31RYpwQJSGlFKUaBVLxmgWR0DBdVqgIyCWdX2UKGgGaAloD0MIByXMtP1tSECUhpRSlGgVS4RoFkdAwXV1yR0U5HV9lChoBmgJaA9DCF6EKcrlXXBAlIaUUpRoFUv9aBZHQMF1rLVe8f51fZQoaAZoCWgPQwhVaCCWzXdxQJSGlFKUaBVLy2gWR0DBddleWv8qdX2UKGgGaAloD0MI19zR/7LicECUhpRSlGgVS/5oFkdAwXYPhQ3xWnV9lChoBmgJaA9DCMDrM2d9mm5AlIaUUpRoFUvgaBZHQMF2cuIRAbB1fZQoaAZoCWgPQwiL3xRWqnRwQJSGlFKUaBVNAQFoFkdAwXardiUgS3V9lChoBmgJaA9DCJ91jZZD83JAlIaUUpRoFUvXaBZHQMF22JrULD11fZQoaAZoCWgPQwhj0Amhg5xwQJSGlFKUaBVLymgWR0DBdwHFglWwdX2UKGgGaAloD0MIE9TwLew2c0CUhpRSlGgVTRYBaBZHQMF3QZf2K2t1fZQoaAZoCWgPQwj7JHfYhBZwQJSGlFKUaBVLw2gWR0DBd5ue8PFvdX2UKGgGaAloD0MIC5sBLsgUckCUhpRSlGgVTSYBaBZHQMF3258a4tp1fZQoaAZoCWgPQwiTN8DMd5FyQJSGlFKUaBVNxwJoFkdAwXi9AeJYT3V9lChoBmgJaA9DCGsqi8KuEm5AlIaUUpRoFUvUaBZHQMF46r/sE7p1fZQoaAZoCWgPQwhz1qccEzJxQJSGlFKUaBVLyGgWR0DBeRMUj9n9dX2UKGgGaAloD0MIG2fTEYAWcUCUhpRSlGgVS79oFkdAwXk6H+Idl3V9lChoBmgJaA9DCPgcWI4Qd3BAlIaUUpRoFUvlaBZHQMF5aHuAqd91fZQoaAZoCWgPQwjytWeWBOpKQJSGlFKUaBVLlGgWR0DBea+5tm+TdX2UKGgGaAloD0MIon+CixWjbkCUhpRSlGgVS+RoFkdAwXnfkjHGTHV9lChoBmgJaA9DCMv1tplKJXFAlIaUUpRoFUvCaBZHQMF6CMIu5Bl1fZQoaAZoCWgPQwgdBYiC2alyQJSGlFKUaBVNtwFoFkdAwXpssBhhIHV9lChoBmgJaA9DCDy858Cy03JAlIaUUpRoFU0GAWgWR0DBetMFdLQHdX2UKGgGaAloD0MII8DpXTw0cECUhpRSlGgVS8NoFkdAwXr9Vo6CDnV9lChoBmgJaA9DCJCkpIchj2VAlIaUUpRoFU3oA2gWR0DBfB21jRUndX2UKGgGaAloD0MIPX5v09/KcECUhpRSlGgVS+9oFkdAwXxXKdxyXHV9lChoBmgJaA9DCJt1xvfFP2NAlIaUUpRoFU3oA2gWR0DBfZK2jO9ndX2UKGgGaAloD0MIApzexfv1SkCUhpRSlGgVS4xoFkdAwX2wpRXOnnV9lChoBmgJaA9DCMsUcxD0OHJAlIaUUpRoFUvUaBZHQMF93Po/zJ91fZQoaAZoCWgPQwgRqz/C8GtxQJSGlFKUaBVLtGgWR0DBfjBvWH1wdX2UKGgGaAloD0MIOEvJctI6cUCUhpRSlGgVS71oFkdAwX5Y6OHWSXV9lChoBmgJaA9DCLO3lPMFMHJAlIaUUpRoFU0uAWgWR0DBfp9Tzd1udX2UKGgGaAloD0MIz4HlCJlzcECUhpRSlGgVS+5oFkdAwX7SyLQ5WHV9lChoBmgJaA9DCNaqXRPSGnFAlIaUUpRoFUvJaBZHQMF/KsLncL11fZQoaAZoCWgPQwjbv7LSZOFxQJSGlFKUaBVLv2gWR0DBf1PfGdZrdX2UKGgGaAloD0MIMxtkklFcckCUhpRSlGgVS89oFkdAwX+CTJyQxXV9lChoBmgJaA9DCBy0Vx+PVHFAlIaUUpRoFUvNaBZHQMF/sBd+ocd1fZQoaAZoCWgPQwjXUGov4vhxQJSGlFKUaBVNFQFoFkdAwX/wsWfseHV9lChoBmgJaA9DCCaN0Tpqy3JAlIaUUpRoFU0MAWgWR0DBgGDTF2mpdX2UKGgGaAloD0MInkDYKRaOcECUhpRSlGgVS8BoFkdAwYCK1E3KjnV9lChoBmgJaA9DCIE+kSdJWnFAlIaUUpRoFUvEaBZHQMGAtbkGRmt1fZQoaAZoCWgPQwhtcCL69UdxQJSGlFKUaBVL0mgWR0DBgOWNvOyFdX2UKGgGaAloD0MIk8fT8gM/cUCUhpRSlGgVS8JoFkdAwYEP2oNutXV9lChoBmgJaA9DCDv/dtkv7nBAlIaUUpRoFUvNaBZHQMGBZ9cbBGh1fZQoaAZoCWgPQwjMYfcdA1NwQJSGlFKUaBVLxWgWR0DBgZYqCpWFdX2UKGgGaAloD0MIPj4hOy8Jc0CUhpRSlGgVS9ZoFkdAwYHFppvgnHV9lChoBmgJaA9DCIGSAgvghXBAlIaUUpRoFU0EAWgWR0DBggN7Uoa2dX2UKGgGaAloD0MIuwuUFNh0bkCUhpRSlGgVS9RoFkdAwYIw+sYEXHV9lChoBmgJaA9DCJFkVu9wz3BAlIaUUpRoFUvkaBZHQMGCjppFkQR1fZQoaAZoCWgPQwhmFqHYSm9yQJSGlFKUaBVL9mgWR0DBgsQN5MURdX2UKGgGaAloD0MINLxZg/doc0CUhpRSlGgVTRoBaBZHQMGDAWhIvrZ1fZQoaAZoCWgPQwjnVZ3VAhJxQJSGlFKUaBVL+WgWR0DBgzOAoXsPdX2UKGgGaAloD0MIbMzriEOubkCUhpRSlGgVS9poFkdAwYONs6aLGnV9lChoBmgJaA9DCKUV31B4U3BAlIaUUpRoFUvSaBZHQMGDvAd4mkZ1fZQoaAZoCWgPQwiw6NZrejNQQJSGlFKUaBVL9mgWR0DBg/A3aSLZdX2UKGgGaAloD0MIZYo5CDqBc0CUhpRSlGgVS9VoFkdAwYQcaAFxGXVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 15708,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2-paulmest-4M/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f4bafcec9160293a6bb2e22fafc142ba1507ab0ab9db8c709f1006c6200d8e0
3
+ size 87929
ppo-LunarLander-v2-paulmest-4M/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca9b2ce3fa57ecff81ae18b0915dfde2b01d2aa67e0e46d20232a5c8e22c110a
3
+ size 43201
ppo-LunarLander-v2-paulmest-4M/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-paulmest-4M/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 284.124134706094, "std_reward": 17.02767064211322, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-29T03:51:02.607935"}
 
1
+ {"mean_reward": 274.77245631693637, "std_reward": 21.310232095583988, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-29T09:27:58.905237"}