Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2-paulmest-2022-12-31_17-29-21-7000000.zip +3 -0
- ppo-LunarLander-v2-paulmest-2022-12-31_17-29-21-7000000/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-paulmest-2022-12-31_17-29-21-7000000/data +98 -0
- ppo-LunarLander-v2-paulmest-2022-12-31_17-29-21-7000000/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-paulmest-2022-12-31_17-29-21-7000000/policy.pth +3 -0
- ppo-LunarLander-v2-paulmest-2022-12-31_17-29-21-7000000/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-paulmest-2022-12-31_17-29-21-7000000/system_info.txt +7 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 302.91 +/- 10.95
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x15e498af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x15e498b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x15e498c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x15e498ca0>", "_build": "<function ActorCriticPolicy._build at 0x15e498d30>", "forward": "<function ActorCriticPolicy.forward at 0x15e498dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x15e498e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x15e498ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x15e498f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x15e499000>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x15e499090>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x15e499120>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x15e4b8140>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "num_timesteps": 10027008, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672397584478623000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVnAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMai9Vc2Vycy9wYXVsLy5weWVudi92ZXJzaW9ucy9tbC1zdHVmZi0zXzEwXzgvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuBQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAFYflD5XfUo/1R9cPdE2Mb9eaQg/m9dbvQAAAAAAAAAAPlulvshRgT/GKUu+NwIRvxvYI786i2e9AAAAAAAAAABC/Zm+p2ZFPxe/Lz5+7wm/1ZjPvl1cqT4AAAAAAAAAAKZPPr4kI80+7mtMPOD8ML8gjpa+unaqPQAAAAAAAAAAmm0gvryWuD5O6X0+fAc6v8JiRr7WR0c+AAAAAAAAAAAa6ak9riGJuoYgz7Ox1AGvWPqiOr9krDMAAIA/AACAPzMrnrya4xQ/O578PPw6d79iqam8k289PQAAAAAAAAAAgGl5vWnhE7wo8UI9bdOoPPyF6TyOOC67AACAPwAAgD+a54Y9PZpHuRCeIL2zbQq8QLy2OZKs8rwAAAAAAACAP7PKCD264L4/+q7fPYESgL4nELm71xeqPAAAAAAAAAAAep8YPvNIbT8pz48+u+VGvxo3sD42sxk+AAAAAAAAAAAGiVY+3NWXPy5NBT9KXR+/KDflPnWRiz4AAAAAAAAAAPp7Az41Skc+URIPvt4HLL/6Iz0+ksXIvQAAAAAAAAAAM4QWvYN/Zbxx8RA+l1EXPWmExT0dddO9AACAPwAAgD8g6jW+Z1umPtsBqD6i3Se/HwymvdOAED4AAAAAAAAAAE2IPD3kAKM/74MdPlHvEr8v7zU85fCVPQAAAAAAAAAAhh4Mvl1/HT46O4I+EA32vpNPQL3Ova09AAAAAAAAAADap7I9rnepOYpDer4uFQm+2IWPvWIPUz8AAIA/AAAAAAAIlz0UaKQ/GxrtPnlzE7/CgZY9zD2tPgAAAAAAAAAAulxLvu/GVD+u2XS+Nks/v6fjx76KxhE9AAAAAAAAAADzIRu+LUC4PibOFT0pRCC/soI1vhv+bD0AAAAAAAAAAADu1bw7oIQ+UP1bPcYTQ78l5uG8JikvuwAAAAAAAAAAmg3WPF4ysD8khyQ/FBvYvh9BkbyYmOK8AAAAAAAAAAAT/lo+4apPP9as3Dz1yym/lzPKPjSWl70AAAAAAAAAAM1CjD22Ozi8I1x8vh04R76Xgyu8gg8RPwAAgD8AAIA/gGhmPcKbpz9d1bU+wnn9vih5kD2BnYg+AAAAAAAAAAAaWtg90tDJPCa3Qb7hJoO+8MA2Pl6qKLsAAAAAAAAAAGbSjT0JbVY9GdknvhN4w75wwue8sqU/vgAAAAAAAAAAQMcOPqhl1D06mAO/pSfUvjJH7724vaa+AAAAAAAAAAAz51c8Hx3suX0iNTWR8e4vet6Ju0PxVLQAAIA/AACAP06CkL5rYfk+1qgpPib4+r786Nq+1XZnPgAAAAAAAAAAWnurva4f1zn6TbC8HeVvO2UmTDobskA9AAAAAAAAAADNM5y9SFeWui6zDjmrAl4zLjcturAEIrgAAIA/AACAP83dIb1IF6m6rWljPHP4IDkXDSe6Ex4WOAAAgD8AAIA/c7cNvtwQtz938RS/1yRpvsM/Dr46BdS+AAAAAAAAAAAzx0W8luqwP2tWmr4M7Le+vIAGPGBF/TwAAAAAAAAAAAbSAj7cWwg9smvdvsx3nr6Oefq9MuWXvgAAAAAAAAAAGvdmveF0kboTGbU7ulmAOSrk37oCtXY4AACAPwAAgD+atI+95LH/PiehNbyi2Gy/j5qovarf77wAAAAAAAAAAGaeRDzVNac/LnynPa4M/r5dqL46Wqu2uwAAAAAAAAAA5jnkPSSfgD2LzqK+UQnjvpppKD7d/OK9AAAAAAAAAACKOpC+n1lTP8Ioir3Lny2/7t/evg1cLz0AAAAAAAAAABog5r3JUzQ9AqPDPmINkL4Osj++cjrsPQAAAAAAAAAATbNjva5Zlrrq1rSyKqTyrmopwrp9jj0zAACAPwAAgD+a6zE+t1GCP07Zij6lJFm/OlehPh0o7z0AAAAAAAAAABrGtb2HcBI/Kdo6vQD/Xr8WpNi9eovnPAAAAAAAAAAAACYlPOHkorpGi5Q1jSLfMGZn7TkMN660AACAPwAAgD9mACS9qflRvAVp0zuqKS49xX5kO+uE1bcAAIA/AACAP+Z85r2Cbrk/ov3TvpdIir6awYC9zRrpvQAAAAAAAAAApkWrvV9HhjznML8+VKGXvvNLCj5CgQE+AAAAAAAAAACmSYG97FmiuTToCrNN/j+qfZhAO18dgTMAAIA/AACAPw314j3T6l0/7fyIPha1eb+01Yk+4LkAPgAAAAAAAAAAxnkGvmWqbj/sjpq+3sRiv32xhb7AzAq+AAAAAAAAAAAAuQU99ux2uoonX7mRWFO0Ot9jOmeqgjgAAIA/AACAP42XJD7wS4M+zuyovmB5LL8Rd0g9luswvgAAAAAAAAAA2tCBvXu0griPmS+4nr8Xs+Q7yjkjWVE3AACAPwAAgD+NUao9hcvBuRBwZL4cD+u9POgxPZOWeD8AAIA/AACAP5qBozyWrK4/dYCKPgouv75DEAe6mOprPQAAAAAAAAAATSsivVxXOD0SX+49W2revrOse71yneg8AAAAAAAAAACaqPc91LE9Pq6Mpr1m1A6/13tvPZJIkL0AAAAAAAAAAM18dTxCuKE/2ubxPYB6Mb9pt0I8Az4vPQAAAAAAAAAAZtO4Pex6k7tbxjq+7CPYPJmD2rtGE6C9AACAPwAAgD+axza81MiqP44LGb4OFBG/ApCKOSzUIL0AAAAAAAAAAJoCqz1cEx26yiU6s9CXNbAvtsE6qN3QMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIS3ZsBGL4c0CUhpRSlIwBbJRLoYwBdJRHQLIqSvIfbK11fZQoaAZoCWgPQwhRvqCFxGpwQJSGlFKUaBVLmWgWR0CyKklmvnr6dX2UKGgGaAloD0MIQKTfvg7ucUCUhpRSlGgVS6xoFkdAsipM93bEgnV9lChoBmgJaA9DCIo+H2VEhXFAlIaUUpRoFUucaBZHQLIqS/oaDPJ1fZQoaAZoCWgPQwiPGhNiLq1yQJSGlFKUaBVLn2gWR0CyKk/114gSdX2UKGgGaAloD0MIFM/ZAsLvcUCUhpRSlGgVS4RoFkdAsipa0w8GLXV9lChoBmgJaA9DCMB2MGKfM3JAlIaUUpRoFUuhaBZHQLIqXfPomol1fZQoaAZoCWgPQwhS0sPQ6ohxQJSGlFKUaBVLpmgWR0CyKmeZ1FH8dX2UKGgGaAloD0MIhnZOs4DwcUCUhpRSlGgVS4BoFkdAsipsJJGvwHV9lChoBmgJaA9DCPWB5J0D8XNAlIaUUpRoFUvCaBZHQLIqdF9a2Wp1fZQoaAZoCWgPQwgrE36p32VyQJSGlFKUaBVLpWgWR0CyKnvSc9W7dX2UKGgGaAloD0MIVp5A2KkmcUCUhpRSlGgVS6ZoFkdAsiqCN6w+uHV9lChoBmgJaA9DCJZdMLimJnBAlIaUUpRoFUufaBZHQLIqhYoRZlp1fZQoaAZoCWgPQwgoJ9pViO1xQJSGlFKUaBVLimgWR0CyKoa5CngpdX2UKGgGaAloD0MIw/S9hqDrcUCUhpRSlGgVS5VoFkdAsiqNVXFLnXV9lChoBmgJaA9DCC0+BcD4S3FAlIaUUpRoFUuFaBZHQLIqk/nnuAt1fZQoaAZoCWgPQwjbMAqCh1pyQJSGlFKUaBVLimgWR0CyKpxVQyh0dX2UKGgGaAloD0MIR450BsZOc0CUhpRSlGgVS8FoFkdAsiqlxVAAyXV9lChoBmgJaA9DCPje36C9nnFAlIaUUpRoFUueaBZHQLIqqWpqASZ1fZQoaAZoCWgPQwgEdjV5inVxQJSGlFKUaBVLmGgWR0CyKqeG47RwdX2UKGgGaAloD0MIJjeKrHUdc0CUhpRSlGgVS7ZoFkdAsiqp8rqdH3V9lChoBmgJaA9DCB5Td2UXRnRAlIaUUpRoFUu6aBZHQLIqtKFqSHN1fZQoaAZoCWgPQwhVoBaDByVyQJSGlFKUaBVLsWgWR0CyKsJjlPrOdX2UKGgGaAloD0MIM8FwruEKc0CUhpRSlGgVS7toFkdAsirQdeY2KnV9lChoBmgJaA9DCAjL2NANa3JAlIaUUpRoFUuyaBZHQLIq1ZiuuA91fZQoaAZoCWgPQwjH9lrQ+zN0QJSGlFKUaBVLrGgWR0CyKtzVc2R8dX2UKGgGaAloD0MIj1GeeXkocUCUhpRSlGgVS4loFkdAsirntx+8XnV9lChoBmgJaA9DCM+FkV4UF3BAlIaUUpRoFUuMaBZHQLIq7aaTfSB1fZQoaAZoCWgPQwhTk+AN6aNzQJSGlFKUaBVLr2gWR0CyKvLIkqtpdX2UKGgGaAloD0MIeA360hsTcUCUhpRSlGgVS6JoFkdAsir1IPK+z3V9lChoBmgJaA9DCKWEYFU9KXJAlIaUUpRoFUupaBZHQLIrCdjXnQp1fZQoaAZoCWgPQwjAIypUN0ZxQJSGlFKUaBVLlGgWR0CyKwkUGmk4dX2UKGgGaAloD0MIiPGaV/X2cUCUhpRSlGgVS8BoFkdAsisPIOpbU3V9lChoBmgJaA9DCJiiXBp/MnJAlIaUUpRoFUujaBZHQLIrE+QlruZ1fZQoaAZoCWgPQwgzb9V16K1yQJSGlFKUaBVLtWgWR0CyKxjCDVYqdX2UKGgGaAloD0MIIZIhx5ZZc0CUhpRSlGgVS5toFkdAsisec7Qsw3V9lChoBmgJaA9DCF/waU5ey3BAlIaUUpRoFUuraBZHQLIrHjPOY6Z1fZQoaAZoCWgPQwjH1jOEY9BBQJSGlFKUaBVLX2gWR0CyKynEMspYdX2UKGgGaAloD0MIQGt+/CXLc0CUhpRSlGgVS7poFkdAsiswXk5p8HV9lChoBmgJaA9DCFyv6UEBG3BAlIaUUpRoFUuFaBZHQLIrPAS39aV1fZQoaAZoCWgPQwh7oYDtoNVxQJSGlFKUaBVLqWgWR0CyK0DwUg0TdX2UKGgGaAloD0MIE5oklpRBdECUhpRSlGgVS5toFkdAsitAcOskp3V9lChoBmgJaA9DCJon1xQI8HFAlIaUUpRoFUumaBZHQLIrQENvwVl1fZQoaAZoCWgPQwiYbDzY4pdxQJSGlFKUaBVLhGgWR0CyK0aG+K0ldX2UKGgGaAloD0MI/wWCAJlbc0CUhpRSlGgVS8doFkdAsitKgxrSE3V9lChoBmgJaA9DCN+/eXFilnNAlIaUUpRoFUvFaBZHQLIrUW1c+q11fZQoaAZoCWgPQwg57L5jOPJwQJSGlFKUaBVLrGgWR0CyK1NTkyULdX2UKGgGaAloD0MIilWDMHdockCUhpRSlGgVS6JoFkdAsitWBRQ793V9lChoBmgJaA9DCNs2jIKgbnJAlIaUUpRoFUusaBZHQLIrZ9UCJXR1fZQoaAZoCWgPQwgbYrzm1VJxQJSGlFKUaBVLf2gWR0CyK3AXl8w6dX2UKGgGaAloD0MIYobGE4FPc0CUhpRSlGgVS8FoFkdAsit4cm0E5nV9lChoBmgJaA9DCB4Wak3zJXJAlIaUUpRoFUu8aBZHQLIreufmLcd1fZQoaAZoCWgPQwi2Dg72Zn9zQJSGlFKUaBVLlWgWR0CyK4s6BAfMdX2UKGgGaAloD0MIaqSl8rZbcUCUhpRSlGgVS51oFkdAsiuNtpEhJXV9lChoBmgJaA9DCJ/leXB3BHJAlIaUUpRoFUuqaBZHQLIrkWX1J191fZQoaAZoCWgPQwhX6lkQCnFyQJSGlFKUaBVLsmgWR0CyK5Tebd8BdX2UKGgGaAloD0MIQ1n4+pr0cECUhpRSlGgVS55oFkdAsiuUfvF3p3V9lChoBmgJaA9DCBA7U+g8tm9AlIaUUpRoFUuGaBZHQLIrluPmxMZ1fZQoaAZoCWgPQwhz275H/bBzQJSGlFKUaBVLqWgWR0CyK5mkzoECdX2UKGgGaAloD0MIFk1nJwPTckCUhpRSlGgVS4loFkdAsiuctvn8sXV9lChoBmgJaA9DCPKZ7J8nSnNAlIaUUpRoFUvCaBZHQLIrn8vmHQB1fZQoaAZoCWgPQwhb64uE9qVyQJSGlFKUaBVLqmgWR0CyK6oPkJa8dX2UKGgGaAloD0MIPE1mvC0TckCUhpRSlGgVS31oFkdAsiuoXizcAXV9lChoBmgJaA9DCJHu5xSkSHFAlIaUUpRoFUuQaBZHQLIrsIzFdcB1fZQoaAZoCWgPQwhnYORlTeNwQJSGlFKUaBVLrGgWR0CyK7JGax5cdX2UKGgGaAloD0MIuynltVLicECUhpRSlGgVS41oFkdAsiuz5ZbILnV9lChoBmgJaA9DCC+FB83u7HBAlIaUUpRoFUuIaBZHQLIruPoFFDx1fZQoaAZoCWgPQwhOKETAoSxyQJSGlFKUaBVLimgWR0CyK9HlGPPtdX2UKGgGaAloD0MIkZkLXN7ocECUhpRSlGgVS6NoFkdAsivV4FA3UHV9lChoBmgJaA9DCDylg/X/bnNAlIaUUpRoFUu3aBZHQLIr20HhS+B1fZQoaAZoCWgPQwjYt5OIcHFvQJSGlFKUaBVLhmgWR0CyK+GAkLQYdX2UKGgGaAloD0MITFRvDazAckCUhpRSlGgVS6loFkdAsivmq3mV7nV9lChoBmgJaA9DCCeJJeVuS3BAlIaUUpRoFUuUaBZHQLIr5LaVUuN1fZQoaAZoCWgPQwjAtKhP8nBzQJSGlFKUaBVLwmgWR0CyK+06Lfk4dX2UKGgGaAloD0MIbNCX3j7Hc0CUhpRSlGgVS8VoFkdAsivsnb7CSHV9lChoBmgJaA9DCIy8rImF/29AlIaUUpRoFUuWaBZHQLIr8i7Ciyp1fZQoaAZoCWgPQwhYHM78Ki9xQJSGlFKUaBVLeWgWR0CyK/gZbY9QdX2UKGgGaAloD0MIETY8vRJ3cECUhpRSlGgVS45oFkdAsiv+rZJ04nV9lChoBmgJaA9DCFg6H54lYHNAlIaUUpRoFUuyaBZHQLIsCvh60IF1fZQoaAZoCWgPQwjkwKvljmJxQJSGlFKUaBVLo2gWR0CyLBQxSHdodX2UKGgGaAloD0MIkzfAzLf+cECUhpRSlGgVS5hoFkdAsiwSOinHenV9lChoBmgJaA9DCLwEpz4QInNAlIaUUpRoFUubaBZHQLIsGsP8Q7N1fZQoaAZoCWgPQwigG5qy071vQJSGlFKUaBVLk2gWR0CyLCtpRGc4dX2UKGgGaAloD0MI3SVxVkTscUCUhpRSlGgVS6toFkdAsiwrCgsbvXV9lChoBmgJaA9DCKIKf4Z3CnBAlIaUUpRoFUuMaBZHQLIsOVoHs1N1fZQoaAZoCWgPQwhBKzBkNYFxQJSGlFKUaBVLn2gWR0CyLDlocrAhdX2UKGgGaAloD0MIFsJqLCF3c0CUhpRSlGgVS8ZoFkdAsiw/mig00nV9lChoBmgJaA9DCIofY+5agHJAlIaUUpRoFUunaBZHQLIsP64UeuF1fZQoaAZoCWgPQwhrfvylBbdyQJSGlFKUaBVLv2gWR0CyLEtoSL62dX2UKGgGaAloD0MI7BhXXFw6cUCUhpRSlGgVS5poFkdAsixPvqkdm3V9lChoBmgJaA9DCNNsHofB+m9AlIaUUpRoFUufaBZHQLIsUMQmNR51fZQoaAZoCWgPQwgvxOqPMHlxQJSGlFKUaBVLimgWR0CyLFzrNW2gdX2UKGgGaAloD0MI8rImFnjCcUCUhpRSlGgVS35oFkdAsixrdTHbRHV9lChoBmgJaA9DCJdYGY18fhhAlIaUUpRoFUtgaBZHQLIsbsjVx0d1fZQoaAZoCWgPQwigwhGk0i50QJSGlFKUaBVLwWgWR0CyLG6ePJaJdX2UKGgGaAloD0MIRZvj3CZicUCUhpRSlGgVS6NoFkdAsixymbb1y3V9lChoBmgJaA9DCK4QVmOJnXNAlIaUUpRoFUuraBZHQLIsfnctXgd1fZQoaAZoCWgPQwh8mL1se3pxQJSGlFKUaBVLoGgWR0CyLH53X7LudX2UKGgGaAloD0MIih9j7hoackCUhpRSlGgVS4toFkdAsiyHMMZxaXV9lChoBmgJaA9DCEJ3SZxVe3FAlIaUUpRoFUujaBZHQLIshumJm/Z1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1530, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.97, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVnAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMai9Vc2Vycy9wYXVsLy5weWVudi92ZXJzaW9ucy9tbC1zdHVmZi0zXzEwXzgvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuBQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-13.1-arm64-arm-64bit Darwin Kernel Version 22.2.0: Fri Nov 11 02:03:51 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T6000", "Python": "3.10.8", "Stable-Baselines3": "2.0.0a0", "PyTorch": "1.13.0", "GPU Enabled": "False", "Numpy": "1.23.5", "Gym": "0.27.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x16d718e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x16d718ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x16d718f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x16d719000>", "_build": "<function ActorCriticPolicy._build at 0x16d719090>", "forward": "<function ActorCriticPolicy.forward at 0x16d719120>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x16d7191b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x16d719240>", "_predict": "<function ActorCriticPolicy._predict at 0x16d7192d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x16d719360>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x16d7193f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x16d719480>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x16d40ddc0>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 7012352, "_total_timesteps": 7000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672532961502336000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVnAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMai9Vc2Vycy9wYXVsLy5weWVudi92ZXJzaW9ucy9tbC1zdHVmZi0zXzEwXzgvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuBQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAFPEUz5wPfQ+hSdEvhc+H7+3p44+918cvgAAAAAAAAAAbaM4PjH0kj/wqJw+pUpFv+iejD4rovU9AAAAAAAAAADauwA+Fzu1P2KTDz+tToO+Fu4gPiINij4AAAAAAAAAAABAfDrFSdc8+7wBvwBsur3QqGG+bkIcPwAAgD8AAAAATQkLvcO9WbrjzXO6U0R8tg2umzuuw485AACAPwAAgD9mZsq7uHeHPLrkZT7Rdai9EjESPjY4bb8AAAAAAACAPzOf5zwC1rg/ORsyPqT53L10/oe7fsPmOwAAAAAAAAAAAELBPJ3osT9rnUg/DaasvqyRqbyBhci9AAAAAAAAAABq6YA+vQ1HPnmVDb/shBG/dyk9PvtJmL4AAAAAAAAAAGbRSr1Zp6s/PooZvmldAL+/rSi+SpT9vQAAAAAAAAAAmrjOvN6atz/mpY6+gRcUPbE0zrwNl0q+AAAAAAAAAACmqis+7yaSPq5rSb6Z0RW/6n1BPpqsuL0AAAAAAAAAAACwAryZU6g/NffYvH6N8r5JcOi85ppzvQAAAAAAAAAAmt3vO94psz/izj0/IP3+vpLcCrw8+iu+AAAAAAAAAACzbKa9BjqjP6DPHr/7LSa/bDftvLdMiL4AAAAAAAAAADNbGbz2bC26LPMss72BlC9dV7u6+2HQMwAAgD8AAIA/zXBbPet1jj2iIGu+OTeyvgJiZD2ynBO+AAAAAAAAAABa+YU9bIn1uylhhL4b6TG9TSBKvdo/Fr4AAIA/AACAP8CqEj61JEE/HDeLPQT2Z7/TVi8++wDUPAAAAAAAAAAAmtkUvR9QwzxlEcs9ziS+vjGmBj3nagA+AAAAAAAAAACNLuw9+IGRPxphuz6AvUG/MphMPrTCED4AAAAAAAAAADPz2zk9rDi7FpU4vLT2lDzpAY28egOAPQAAgD8AAIA/M6LtvNIfwD8TVP+9PQWdvb7Fpr1o8eu9AAAAAAAAAABmsrs7pD54u05f7TuiW4Y84g2vvELcZj0AAIA/AACAP5pV5DulhK8/2vxpPsE7Hb/+QM27OzCSvAAAAAAAAAAAhiRKvp3N2z7Fi9Q+om1Pvz0UFb7tOas+AAAAAAAAAAAAy/Y8g85GvGNbBz56nCW+nc5wvVuW4T4AAIA/AACAPwa2cz7mlQw/hXGHPZCmKb8kRMg+VSpevQAAAAAAAAAAze1BPqoYJD4bXQ6/7Z/avvfGuD0muIq+AAAAAAAAAAATygM+scwOPorY/b5QWoy+Bn6avGjka74AAAAAAAAAAMAsHD4Uh4s/3qvMPrEbRb/Xj4M+zxhEPgAAAAAAAAAAmjloOz3LMbsb50u9NFXDPK8bPTxVcqa9AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0017645714285714487, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAvT7/s1TckCUhpRSlIwBbJRLs4wBdJRHQJvwHzxwyZd1fZQoaAZoCWgPQwgk7rH0IZ5rQJSGlFKUaBVLyGgWR0Cb8Fn9vS+hdX2UKGgGaAloD0MIRQ2mYfgkc0CUhpRSlGgVS6VoFkdAm/Bw3gk1M3V9lChoBmgJaA9DCESJljwe82lAlIaUUpRoFUvIaBZHQJvwfVUdaMd1fZQoaAZoCWgPQwipnzcVqdhxQJSGlFKUaBVLuGgWR0Cb8HkDp1RtdX2UKGgGaAloD0MI56ij46oZcECUhpRSlGgVS5doFkdAm/Co/mknC3V9lChoBmgJaA9DCLIPsiyYGXJAlIaUUpRoFUuQaBZHQJvw6ajN6gN1fZQoaAZoCWgPQwgxt3u5TxlyQJSGlFKUaBVLvmgWR0Cb8PO5J9RadX2UKGgGaAloD0MI46dxb/64cUCUhpRSlGgVS6JoFkdAm/DwIyCWeHV9lChoBmgJaA9DCG+e6pAbzXBAlIaUUpRoFUulaBZHQJvw7b1yvLZ1fZQoaAZoCWgPQwgB2lazDidxQJSGlFKUaBVLtWgWR0Cb8QyGBWgfdX2UKGgGaAloD0MIkWEVb+TUb0CUhpRSlGgVS6ZoFkdAm/EQ5/9YOnV9lChoBmgJaA9DCI0ngjgPrXJAlIaUUpRoFUvGaBZHQJvxbizcAR11fZQoaAZoCWgPQwgu46YGGkBpQJSGlFKUaBVLyGgWR0Cb8Zkl/pdKdX2UKGgGaAloD0MI1ZXP8nxEcECUhpRSlGgVS6poFkdAm/GXI2fkFXV9lChoBmgJaA9DCFmK5CuBh2hAlIaUUpRoFUvIaBZHQJvxpZW7voh1fZQoaAZoCWgPQwgXnMHfr1RzQJSGlFKUaBVLxWgWR0Cb8amlImPYdX2UKGgGaAloD0MI170ViUn4cUCUhpRSlGgVS8ZoFkdAm/HA2VE/jnV9lChoBmgJaA9DCO888ZwtQWlAlIaUUpRoFUvIaBZHQJvxwNQTEit1fZQoaAZoCWgPQwhdwqG3eJBJQJSGlFKUaBVLb2gWR0Cb8eX+VC5VdX2UKGgGaAloD0MItB1Td6VickCUhpRSlGgVS79oFkdAm/IHEAHVw3V9lChoBmgJaA9DCBizJatiaXFAlIaUUpRoFUuWaBZHQJvyL2YfGMp1fZQoaAZoCWgPQwhSmWIOAqNzQJSGlFKUaBVLwGgWR0Cb8j3juKGddX2UKGgGaAloD0MIVHJO7GGEc0CUhpRSlGgVS8ZoFkdAm/JTLGJemnV9lChoBmgJaA9DCCFZwARuhnJAlIaUUpRoFUu0aBZHQJvyh4iX6ZZ1fZQoaAZoCWgPQwg6XKs9bHByQJSGlFKUaBVLu2gWR0Cb8pKe05U+dX2UKGgGaAloD0MI7Sx6p8Lpc0CUhpRSlGgVS7toFkdAm/KrbtZ3cHV9lChoBmgJaA9DCHkFoidlKWhAlIaUUpRoFUvIaBZHQJvyub2Dg651fZQoaAZoCWgPQwiF61G4nl9rQJSGlFKUaBVLyGgWR0Cb8tnscABDdX2UKGgGaAloD0MIXRWoxSAXdECUhpRSlGgVS7poFkdAm/L5sXSBsnV9lChoBmgJaA9DCN6Rsdo8CHJAlIaUUpRoFUu4aBZHQJvzI/wAlv91fZQoaAZoCWgPQwgD6WLTSmRqQJSGlFKUaBVLyGgWR0Cb8yudf9gndX2UKGgGaAloD0MIe2gfK/iFcUCUhpRSlGgVS7doFkdAm/NurZJ04nV9lChoBmgJaA9DCNJwytz8W3NAlIaUUpRoFUukaBZHQJvzds+FDfF1fZQoaAZoCWgPQwh7a2CrBEFzQJSGlFKUaBVLsGgWR0Cb85/kNnXedX2UKGgGaAloD0MIOiAJ+7ZVcUCUhpRSlGgVS6ZoFkdAm/Oq9oN/fHV9lChoBmgJaA9DCCoDB7T0F3FAlIaUUpRoFUuWaBZHQJvzwX3xnWd1fZQoaAZoCWgPQwjkht9N95xxQJSGlFKUaBVLnGgWR0Cb8780k4WDdX2UKGgGaAloD0MIDcSymcNXakCUhpRSlGgVS8hoFkdAm/P9RR/EwXV9lChoBmgJaA9DCNnMIalFKXBAlIaUUpRoFUusaBZHQJv0EgaFVT91fZQoaAZoCWgPQwjgha3ZyvtoQJSGlFKUaBVLyGgWR0Cb9BxMFlkIdX2UKGgGaAloD0MI4UbKFom8cUCUhpRSlGgVS7RoFkdAm/Q0aVD8cnV9lChoBmgJaA9DCLdGBONgtHNAlIaUUpRoFUu7aBZHQJv0UDGLk0d1fZQoaAZoCWgPQwhTexFthxRyQJSGlFKUaBVLuWgWR0Cb9GxFiKBNdX2UKGgGaAloD0MIq0IDsawRc0CUhpRSlGgVS6poFkdAm/SuzMRpUXV9lChoBmgJaA9DCHheKjamaHBAlIaUUpRoFUuUaBZHQJv0u3Zwn6V1fZQoaAZoCWgPQwi+iSE5Wd9zQJSGlFKUaBVLtGgWR0Cb9LgFX7tRdX2UKGgGaAloD0MImfOMfQmYcUCUhpRSlGgVS6loFkdAm/TUQ04zanV9lChoBmgJaA9DCL02GyvxRXJAlIaUUpRoFUukaBZHQJv05SQ5myx1fZQoaAZoCWgPQwhtxmmI6mdyQJSGlFKUaBVLtmgWR0Cb9On/kvK2dX2UKGgGaAloD0MIQQ+1bZgYcUCUhpRSlGgVS5xoFkdAm/UKIJqqO3V9lChoBmgJaA9DCJIlcyxvvGhAlIaUUpRoFUvIaBZHQJv1Rcu8K5V1fZQoaAZoCWgPQwhTQUXVr1ZzQJSGlFKUaBVLx2gWR0Cb9UWjoIOZdX2UKGgGaAloD0MI3PXSFIHnb0CUhpRSlGgVS6loFkdAm/VRsl9jPXV9lChoBmgJaA9DCHZtb7fk9nFAlIaUUpRoFUvIaBZHQJv1XpdKNAF1fZQoaAZoCWgPQwg+d4L9l31zQJSGlFKUaBVLtWgWR0Cb9Zm1pj+adX2UKGgGaAloD0MIzGH3HcNZc0CUhpRSlGgVS7RoFkdAm/XIREnb7HV9lChoBmgJaA9DCE5iEFi5WHNAlIaUUpRoFUu3aBZHQJv15BWxQi11fZQoaAZoCWgPQwgO+WcGsdFyQJSGlFKUaBVLoWgWR0Cb9hivPkaNdX2UKGgGaAloD0MIvw6cM2JTckCUhpRSlGgVS7toFkdAm/YhjOLR8nV9lChoBmgJaA9DCHRcjeyKj3JAlIaUUpRoFUuXaBZHQJv2LhYNiH91fZQoaAZoCWgPQwhHA3gLZEpzQJSGlFKUaBVLuGgWR0Cb9jYBvJiidX2UKGgGaAloD0MIVwbVBmfacUCUhpRSlGgVS8JoFkdAm/Yzx9XtB3V9lChoBmgJaA9DCIMT0a8tBnNAlIaUUpRoFUu7aBZHQJv2Xrt3OfN1fZQoaAZoCWgPQwhmMEYkip1zQJSGlFKUaBVLuWgWR0Cb9n801qFidX2UKGgGaAloD0MIhdBBl3BacUCUhpRSlGgVS5loFkdAm/aF9v0h/3V9lChoBmgJaA9DCNV5VPxfLnFAlIaUUpRoFUuWaBZHQJv2xCE6DGt1fZQoaAZoCWgPQwgHl445z99yQJSGlFKUaBVLtGgWR0Cb9t9v0h/zdX2UKGgGaAloD0MIMbH5uPYgc0CUhpRSlGgVS7NoFkdAm/blpfx+a3V9lChoBmgJaA9DCHL6er7mrW9AlIaUUpRoFUuYaBZHQJv26mqHXVd1fZQoaAZoCWgPQwiTVKaYg5toQJSGlFKUaBVLyGgWR0Cb9wz7uUlidX2UKGgGaAloD0MI2CyXjU4ickCUhpRSlGgVS4hoFkdAm/c0KZ2IPHV9lChoBmgJaA9DCB2QhH3733BAlIaUUpRoFUupaBZHQJv3SelKsdV1fZQoaAZoCWgPQwj6Yu/FF+dxQJSGlFKUaBVLyGgWR0Cb90vK2a2GdX2UKGgGaAloD0MIRnnm5XCVckCUhpRSlGgVS6hoFkdAm/dgT238XXV9lChoBmgJaA9DCDiB6bTuVnJAlIaUUpRoFUvAaBZHQJv3fB42S+x1fZQoaAZoCWgPQwgcQSrFjudpQJSGlFKUaBVLyGgWR0Cb94GWldkbdX2UKGgGaAloD0MIv9alRuiWckCUhpRSlGgVS6ZoFkdAm/eaqn3tbHV9lChoBmgJaA9DCHPXEvJBmHBAlIaUUpRoFUueaBZHQJv3onBtUGV1fZQoaAZoCWgPQwjDSC9qN65xQJSGlFKUaBVLt2gWR0Cb99myxA0LdX2UKGgGaAloD0MIZJEm3oEeckCUhpRSlGgVS5poFkdAm/fkj5bhWHV9lChoBmgJaA9DCJOq7SZ45HNAlIaUUpRoFUu6aBZHQJv34EkjX4F1fZQoaAZoCWgPQwi2upwSEJlxQJSGlFKUaBVLtmgWR0Cb9/0mtyPudX2UKGgGaAloD0MIelVntUAcc0CUhpRSlGgVS6poFkdAm/gjVhCtzXV9lChoBmgJaA9DCFjk1w9xp3FAlIaUUpRoFUuvaBZHQJv4QwN9YwJ1fZQoaAZoCWgPQwh/orJhzT1sQJSGlFKUaBVLyGgWR0Cb+GgctGutdX2UKGgGaAloD0MI1qiHaHS7cECUhpRSlGgVS7toFkdAm/iEzwc5sHV9lChoBmgJaA9DCNALdy7MlnJAlIaUUpRoFUu0aBZHQJv4ofA9FF51fZQoaAZoCWgPQwgwKqkT0HZxQJSGlFKUaBVLmmgWR0Cb+OvQnhKldX2UKGgGaAloD0MIjGX6JeI6c0CUhpRSlGgVS75oFkdAm/kAoG6f8XV9lChoBmgJaA9DCObo8XvbSHFAlIaUUpRoFUutaBZHQJv4/mmtQsR1fZQoaAZoCWgPQwgY7IZti5VxQJSGlFKUaBVLoGgWR0Cb+SpN9H+ZdX2UKGgGaAloD0MImN9pMmMPckCUhpRSlGgVS7JoFkdAm/kx3zMA3nV9lChoBmgJaA9DCJT7HYrC9HNAlIaUUpRoFUvCaBZHQJv5LY150KZ1fZQoaAZoCWgPQwjHuyNjtaxxQJSGlFKUaBVLl2gWR0Cb+Uc1fmcOdX2UKGgGaAloD0MIt39lpUnFcUCUhpRSlGgVS7xoFkdAm/lXhS9/SnV9lChoBmgJaA9DCDhIiPJFi3FAlIaUUpRoFUuXaBZHQJv5aI/JNj91fZQoaAZoCWgPQwiYFYp0P3VpQJSGlFKUaBVLyGgWR0Cb+X4C6pYLdX2UKGgGaAloD0MIXMZNDTTwcUCUhpRSlGgVS4NoFkdAm/l5uZThpHV9lChoBmgJaA9DCCxn74x2mHFAlIaUUpRoFUvGaBZHQJv5hLDhtLt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 856, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.97, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVnAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMai9Vc2Vycy9wYXVsLy5weWVudi92ZXJzaW9ucy9tbC1zdHVmZi0zXzEwXzgvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuBQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-13.1-arm64-arm-64bit Darwin Kernel Version 22.2.0: Fri Nov 11 02:03:51 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T6000", "Python": "3.10.8", "Stable-Baselines3": "2.0.0a0", "PyTorch": "1.13.0", "GPU Enabled": "False", "Numpy": "1.23.5", "Gym": "0.27.0"}}
|
ppo-LunarLander-v2-paulmest-2022-12-31_17-29-21-7000000.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9b2d58b0a6ff6bd7e43c4b64d9b3786956e3e711a5bfbb697613243e70b69fc
|
3 |
+
size 148144
|
ppo-LunarLander-v2-paulmest-2022-12-31_17-29-21-7000000/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a0
|
ppo-LunarLander-v2-paulmest-2022-12-31_17-29-21-7000000/data
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x16d718e50>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x16d718ee0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x16d718f70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x16d719000>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x16d719090>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x16d719120>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x16d7191b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x16d719240>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x16d7192d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x16d719360>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x16d7193f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x16d719480>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x16d40ddc0>"
|
21 |
+
},
|
22 |
+
"verbose": 0,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
|
27 |
+
"dtype": "float32",
|
28 |
+
"bounded_below": "[ True True True True True True True True]",
|
29 |
+
"bounded_above": "[ True True True True True True True True]",
|
30 |
+
"_shape": [
|
31 |
+
8
|
32 |
+
],
|
33 |
+
"low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
34 |
+
"high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
|
35 |
+
"low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
36 |
+
"high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
|
37 |
+
"_np_random": null
|
38 |
+
},
|
39 |
+
"action_space": {
|
40 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
41 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
42 |
+
"n": "4",
|
43 |
+
"start": "0",
|
44 |
+
"_shape": [],
|
45 |
+
"dtype": "int64",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"n_envs": 32,
|
49 |
+
"num_timesteps": 7012352,
|
50 |
+
"_total_timesteps": 7000000,
|
51 |
+
"_num_timesteps_at_start": 0,
|
52 |
+
"seed": null,
|
53 |
+
"action_noise": null,
|
54 |
+
"start_time": 1672532961502336000,
|
55 |
+
"learning_rate": 0.0003,
|
56 |
+
"tensorboard_log": null,
|
57 |
+
"lr_schedule": {
|
58 |
+
":type:": "<class 'function'>",
|
59 |
+
":serialized:": "gAWVnAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMai9Vc2Vycy9wYXVsLy5weWVudi92ZXJzaW9ucy9tbC1zdHVmZi0zXzEwXzgvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuBQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
60 |
+
},
|
61 |
+
"_last_obs": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAFPEUz5wPfQ+hSdEvhc+H7+3p44+918cvgAAAAAAAAAAbaM4PjH0kj/wqJw+pUpFv+iejD4rovU9AAAAAAAAAADauwA+Fzu1P2KTDz+tToO+Fu4gPiINij4AAAAAAAAAAABAfDrFSdc8+7wBvwBsur3QqGG+bkIcPwAAgD8AAAAATQkLvcO9WbrjzXO6U0R8tg2umzuuw485AACAPwAAgD9mZsq7uHeHPLrkZT7Rdai9EjESPjY4bb8AAAAAAACAPzOf5zwC1rg/ORsyPqT53L10/oe7fsPmOwAAAAAAAAAAAELBPJ3osT9rnUg/DaasvqyRqbyBhci9AAAAAAAAAABq6YA+vQ1HPnmVDb/shBG/dyk9PvtJmL4AAAAAAAAAAGbRSr1Zp6s/PooZvmldAL+/rSi+SpT9vQAAAAAAAAAAmrjOvN6atz/mpY6+gRcUPbE0zrwNl0q+AAAAAAAAAACmqis+7yaSPq5rSb6Z0RW/6n1BPpqsuL0AAAAAAAAAAACwAryZU6g/NffYvH6N8r5JcOi85ppzvQAAAAAAAAAAmt3vO94psz/izj0/IP3+vpLcCrw8+iu+AAAAAAAAAACzbKa9BjqjP6DPHr/7LSa/bDftvLdMiL4AAAAAAAAAADNbGbz2bC26LPMss72BlC9dV7u6+2HQMwAAgD8AAIA/zXBbPet1jj2iIGu+OTeyvgJiZD2ynBO+AAAAAAAAAABa+YU9bIn1uylhhL4b6TG9TSBKvdo/Fr4AAIA/AACAP8CqEj61JEE/HDeLPQT2Z7/TVi8++wDUPAAAAAAAAAAAmtkUvR9QwzxlEcs9ziS+vjGmBj3nagA+AAAAAAAAAACNLuw9+IGRPxphuz6AvUG/MphMPrTCED4AAAAAAAAAADPz2zk9rDi7FpU4vLT2lDzpAY28egOAPQAAgD8AAIA/M6LtvNIfwD8TVP+9PQWdvb7Fpr1o8eu9AAAAAAAAAABmsrs7pD54u05f7TuiW4Y84g2vvELcZj0AAIA/AACAP5pV5DulhK8/2vxpPsE7Hb/+QM27OzCSvAAAAAAAAAAAhiRKvp3N2z7Fi9Q+om1Pvz0UFb7tOas+AAAAAAAAAAAAy/Y8g85GvGNbBz56nCW+nc5wvVuW4T4AAIA/AACAPwa2cz7mlQw/hXGHPZCmKb8kRMg+VSpevQAAAAAAAAAAze1BPqoYJD4bXQ6/7Z/avvfGuD0muIq+AAAAAAAAAAATygM+scwOPorY/b5QWoy+Bn6avGjka74AAAAAAAAAAMAsHD4Uh4s/3qvMPrEbRb/Xj4M+zxhEPgAAAAAAAAAAmjloOz3LMbsb50u9NFXDPK8bPTxVcqa9AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
|
64 |
+
},
|
65 |
+
"_last_episode_starts": {
|
66 |
+
":type:": "<class 'numpy.ndarray'>",
|
67 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
68 |
+
},
|
69 |
+
"_last_original_obs": null,
|
70 |
+
"_episode_num": 0,
|
71 |
+
"use_sde": false,
|
72 |
+
"sde_sample_freq": -1,
|
73 |
+
"_current_progress_remaining": -0.0017645714285714487,
|
74 |
+
"ep_info_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAvT7/s1TckCUhpRSlIwBbJRLs4wBdJRHQJvwHzxwyZd1fZQoaAZoCWgPQwgk7rH0IZ5rQJSGlFKUaBVLyGgWR0Cb8Fn9vS+hdX2UKGgGaAloD0MIRQ2mYfgkc0CUhpRSlGgVS6VoFkdAm/Bw3gk1M3V9lChoBmgJaA9DCESJljwe82lAlIaUUpRoFUvIaBZHQJvwfVUdaMd1fZQoaAZoCWgPQwipnzcVqdhxQJSGlFKUaBVLuGgWR0Cb8HkDp1RtdX2UKGgGaAloD0MI56ij46oZcECUhpRSlGgVS5doFkdAm/Co/mknC3V9lChoBmgJaA9DCLIPsiyYGXJAlIaUUpRoFUuQaBZHQJvw6ajN6gN1fZQoaAZoCWgPQwgxt3u5TxlyQJSGlFKUaBVLvmgWR0Cb8PO5J9RadX2UKGgGaAloD0MI46dxb/64cUCUhpRSlGgVS6JoFkdAm/DwIyCWeHV9lChoBmgJaA9DCG+e6pAbzXBAlIaUUpRoFUulaBZHQJvw7b1yvLZ1fZQoaAZoCWgPQwgB2lazDidxQJSGlFKUaBVLtWgWR0Cb8QyGBWgfdX2UKGgGaAloD0MIkWEVb+TUb0CUhpRSlGgVS6ZoFkdAm/EQ5/9YOnV9lChoBmgJaA9DCI0ngjgPrXJAlIaUUpRoFUvGaBZHQJvxbizcAR11fZQoaAZoCWgPQwgu46YGGkBpQJSGlFKUaBVLyGgWR0Cb8Zkl/pdKdX2UKGgGaAloD0MI1ZXP8nxEcECUhpRSlGgVS6poFkdAm/GXI2fkFXV9lChoBmgJaA9DCFmK5CuBh2hAlIaUUpRoFUvIaBZHQJvxpZW7voh1fZQoaAZoCWgPQwgXnMHfr1RzQJSGlFKUaBVLxWgWR0Cb8amlImPYdX2UKGgGaAloD0MI170ViUn4cUCUhpRSlGgVS8ZoFkdAm/HA2VE/jnV9lChoBmgJaA9DCO888ZwtQWlAlIaUUpRoFUvIaBZHQJvxwNQTEit1fZQoaAZoCWgPQwhdwqG3eJBJQJSGlFKUaBVLb2gWR0Cb8eX+VC5VdX2UKGgGaAloD0MItB1Td6VickCUhpRSlGgVS79oFkdAm/IHEAHVw3V9lChoBmgJaA9DCBizJatiaXFAlIaUUpRoFUuWaBZHQJvyL2YfGMp1fZQoaAZoCWgPQwhSmWIOAqNzQJSGlFKUaBVLwGgWR0Cb8j3juKGddX2UKGgGaAloD0MIVHJO7GGEc0CUhpRSlGgVS8ZoFkdAm/JTLGJemnV9lChoBmgJaA9DCCFZwARuhnJAlIaUUpRoFUu0aBZHQJvyh4iX6ZZ1fZQoaAZoCWgPQwg6XKs9bHByQJSGlFKUaBVLu2gWR0Cb8pKe05U+dX2UKGgGaAloD0MI7Sx6p8Lpc0CUhpRSlGgVS7toFkdAm/KrbtZ3cHV9lChoBmgJaA9DCHkFoidlKWhAlIaUUpRoFUvIaBZHQJvyub2Dg651fZQoaAZoCWgPQwiF61G4nl9rQJSGlFKUaBVLyGgWR0Cb8tnscABDdX2UKGgGaAloD0MIXRWoxSAXdECUhpRSlGgVS7poFkdAm/L5sXSBsnV9lChoBmgJaA9DCN6Rsdo8CHJAlIaUUpRoFUu4aBZHQJvzI/wAlv91fZQoaAZoCWgPQwgD6WLTSmRqQJSGlFKUaBVLyGgWR0Cb8yudf9gndX2UKGgGaAloD0MIe2gfK/iFcUCUhpRSlGgVS7doFkdAm/NurZJ04nV9lChoBmgJaA9DCNJwytz8W3NAlIaUUpRoFUukaBZHQJvzds+FDfF1fZQoaAZoCWgPQwh7a2CrBEFzQJSGlFKUaBVLsGgWR0Cb85/kNnXedX2UKGgGaAloD0MIOiAJ+7ZVcUCUhpRSlGgVS6ZoFkdAm/Oq9oN/fHV9lChoBmgJaA9DCCoDB7T0F3FAlIaUUpRoFUuWaBZHQJvzwX3xnWd1fZQoaAZoCWgPQwjkht9N95xxQJSGlFKUaBVLnGgWR0Cb8780k4WDdX2UKGgGaAloD0MIDcSymcNXakCUhpRSlGgVS8hoFkdAm/P9RR/EwXV9lChoBmgJaA9DCNnMIalFKXBAlIaUUpRoFUusaBZHQJv0EgaFVT91fZQoaAZoCWgPQwjgha3ZyvtoQJSGlFKUaBVLyGgWR0Cb9BxMFlkIdX2UKGgGaAloD0MI4UbKFom8cUCUhpRSlGgVS7RoFkdAm/Q0aVD8cnV9lChoBmgJaA9DCLdGBONgtHNAlIaUUpRoFUu7aBZHQJv0UDGLk0d1fZQoaAZoCWgPQwhTexFthxRyQJSGlFKUaBVLuWgWR0Cb9GxFiKBNdX2UKGgGaAloD0MIq0IDsawRc0CUhpRSlGgVS6poFkdAm/SuzMRpUXV9lChoBmgJaA9DCHheKjamaHBAlIaUUpRoFUuUaBZHQJv0u3Zwn6V1fZQoaAZoCWgPQwi+iSE5Wd9zQJSGlFKUaBVLtGgWR0Cb9LgFX7tRdX2UKGgGaAloD0MImfOMfQmYcUCUhpRSlGgVS6loFkdAm/TUQ04zanV9lChoBmgJaA9DCL02GyvxRXJAlIaUUpRoFUukaBZHQJv05SQ5myx1fZQoaAZoCWgPQwhtxmmI6mdyQJSGlFKUaBVLtmgWR0Cb9On/kvK2dX2UKGgGaAloD0MIQQ+1bZgYcUCUhpRSlGgVS5xoFkdAm/UKIJqqO3V9lChoBmgJaA9DCJIlcyxvvGhAlIaUUpRoFUvIaBZHQJv1Rcu8K5V1fZQoaAZoCWgPQwhTQUXVr1ZzQJSGlFKUaBVLx2gWR0Cb9UWjoIOZdX2UKGgGaAloD0MI3PXSFIHnb0CUhpRSlGgVS6loFkdAm/VRsl9jPXV9lChoBmgJaA9DCHZtb7fk9nFAlIaUUpRoFUvIaBZHQJv1XpdKNAF1fZQoaAZoCWgPQwg+d4L9l31zQJSGlFKUaBVLtWgWR0Cb9Zm1pj+adX2UKGgGaAloD0MIzGH3HcNZc0CUhpRSlGgVS7RoFkdAm/XIREnb7HV9lChoBmgJaA9DCE5iEFi5WHNAlIaUUpRoFUu3aBZHQJv15BWxQi11fZQoaAZoCWgPQwgO+WcGsdFyQJSGlFKUaBVLoWgWR0Cb9hivPkaNdX2UKGgGaAloD0MIvw6cM2JTckCUhpRSlGgVS7toFkdAm/YhjOLR8nV9lChoBmgJaA9DCHRcjeyKj3JAlIaUUpRoFUuXaBZHQJv2LhYNiH91fZQoaAZoCWgPQwhHA3gLZEpzQJSGlFKUaBVLuGgWR0Cb9jYBvJiidX2UKGgGaAloD0MIVwbVBmfacUCUhpRSlGgVS8JoFkdAm/Yzx9XtB3V9lChoBmgJaA9DCIMT0a8tBnNAlIaUUpRoFUu7aBZHQJv2Xrt3OfN1fZQoaAZoCWgPQwhmMEYkip1zQJSGlFKUaBVLuWgWR0Cb9n801qFidX2UKGgGaAloD0MIhdBBl3BacUCUhpRSlGgVS5loFkdAm/aF9v0h/3V9lChoBmgJaA9DCNV5VPxfLnFAlIaUUpRoFUuWaBZHQJv2xCE6DGt1fZQoaAZoCWgPQwgHl445z99yQJSGlFKUaBVLtGgWR0Cb9t9v0h/zdX2UKGgGaAloD0MIMbH5uPYgc0CUhpRSlGgVS7NoFkdAm/blpfx+a3V9lChoBmgJaA9DCHL6er7mrW9AlIaUUpRoFUuYaBZHQJv26mqHXVd1fZQoaAZoCWgPQwiTVKaYg5toQJSGlFKUaBVLyGgWR0Cb9wz7uUlidX2UKGgGaAloD0MI2CyXjU4ickCUhpRSlGgVS4hoFkdAm/c0KZ2IPHV9lChoBmgJaA9DCB2QhH3733BAlIaUUpRoFUupaBZHQJv3SelKsdV1fZQoaAZoCWgPQwj6Yu/FF+dxQJSGlFKUaBVLyGgWR0Cb90vK2a2GdX2UKGgGaAloD0MIRnnm5XCVckCUhpRSlGgVS6hoFkdAm/dgT238XXV9lChoBmgJaA9DCDiB6bTuVnJAlIaUUpRoFUvAaBZHQJv3fB42S+x1fZQoaAZoCWgPQwgcQSrFjudpQJSGlFKUaBVLyGgWR0Cb94GWldkbdX2UKGgGaAloD0MIv9alRuiWckCUhpRSlGgVS6ZoFkdAm/eaqn3tbHV9lChoBmgJaA9DCHPXEvJBmHBAlIaUUpRoFUueaBZHQJv3onBtUGV1fZQoaAZoCWgPQwjDSC9qN65xQJSGlFKUaBVLt2gWR0Cb99myxA0LdX2UKGgGaAloD0MIZJEm3oEeckCUhpRSlGgVS5poFkdAm/fkj5bhWHV9lChoBmgJaA9DCJOq7SZ45HNAlIaUUpRoFUu6aBZHQJv34EkjX4F1fZQoaAZoCWgPQwi2upwSEJlxQJSGlFKUaBVLtmgWR0Cb9/0mtyPudX2UKGgGaAloD0MIelVntUAcc0CUhpRSlGgVS6poFkdAm/gjVhCtzXV9lChoBmgJaA9DCFjk1w9xp3FAlIaUUpRoFUuvaBZHQJv4QwN9YwJ1fZQoaAZoCWgPQwh/orJhzT1sQJSGlFKUaBVLyGgWR0Cb+GgctGutdX2UKGgGaAloD0MI1qiHaHS7cECUhpRSlGgVS7toFkdAm/iEzwc5sHV9lChoBmgJaA9DCNALdy7MlnJAlIaUUpRoFUu0aBZHQJv4ofA9FF51fZQoaAZoCWgPQwgwKqkT0HZxQJSGlFKUaBVLmmgWR0Cb+OvQnhKldX2UKGgGaAloD0MIjGX6JeI6c0CUhpRSlGgVS75oFkdAm/kAoG6f8XV9lChoBmgJaA9DCObo8XvbSHFAlIaUUpRoFUutaBZHQJv4/mmtQsR1fZQoaAZoCWgPQwgY7IZti5VxQJSGlFKUaBVLoGgWR0Cb+SpN9H+ZdX2UKGgGaAloD0MImN9pMmMPckCUhpRSlGgVS7JoFkdAm/kx3zMA3nV9lChoBmgJaA9DCJT7HYrC9HNAlIaUUpRoFUvCaBZHQJv5LY150KZ1fZQoaAZoCWgPQwjHuyNjtaxxQJSGlFKUaBVLl2gWR0Cb+Uc1fmcOdX2UKGgGaAloD0MIt39lpUnFcUCUhpRSlGgVS7xoFkdAm/lXhS9/SnV9lChoBmgJaA9DCDhIiPJFi3FAlIaUUpRoFUuXaBZHQJv5aI/JNj91fZQoaAZoCWgPQwiYFYp0P3VpQJSGlFKUaBVLyGgWR0Cb+X4C6pYLdX2UKGgGaAloD0MIXMZNDTTwcUCUhpRSlGgVS4NoFkdAm/l5uZThpHV9lChoBmgJaA9DCCxn74x2mHFAlIaUUpRoFUvGaBZHQJv5hLDhtLt1ZS4="
|
77 |
+
},
|
78 |
+
"ep_success_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
81 |
+
},
|
82 |
+
"_n_updates": 856,
|
83 |
+
"n_steps": 1024,
|
84 |
+
"gamma": 0.999,
|
85 |
+
"gae_lambda": 0.97,
|
86 |
+
"ent_coef": 0.01,
|
87 |
+
"vf_coef": 0.5,
|
88 |
+
"max_grad_norm": 0.5,
|
89 |
+
"batch_size": 64,
|
90 |
+
"n_epochs": 4,
|
91 |
+
"clip_range": {
|
92 |
+
":type:": "<class 'function'>",
|
93 |
+
":serialized:": "gAWVnAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMai9Vc2Vycy9wYXVsLy5weWVudi92ZXJzaW9ucy9tbC1zdHVmZi0zXzEwXzgvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuBQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
94 |
+
},
|
95 |
+
"clip_range_vf": null,
|
96 |
+
"normalize_advantage": true,
|
97 |
+
"target_kl": null
|
98 |
+
}
|
ppo-LunarLander-v2-paulmest-2022-12-31_17-29-21-7000000/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:968e56741f7361c2d1b5908650ddcf7df399e34380983e468788905b30c5e628
|
3 |
+
size 87545
|
ppo-LunarLander-v2-paulmest-2022-12-31_17-29-21-7000000/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9498690f101d686097a76702a08dfb8d4571ab2eb83eccafcf0e7ed6d34f9e0
|
3 |
+
size 43265
|
ppo-LunarLander-v2-paulmest-2022-12-31_17-29-21-7000000/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-paulmest-2022-12-31_17-29-21-7000000/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: macOS-13.1-arm64-arm-64bit Darwin Kernel Version 22.2.0: Fri Nov 11 02:03:51 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T6000
|
2 |
+
Python: 3.10.8
|
3 |
+
Stable-Baselines3: 2.0.0a0
|
4 |
+
PyTorch: 1.13.0
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.23.5
|
7 |
+
Gym: 0.27.0
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 302.909294262157, "std_reward": 10.953160226915308, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-31T18:40:23.351752"}
|