PaulMest commited on
Commit
0e8e86a
1 Parent(s): 53c515a

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 264.23 +/- 82.77
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 304.14 +/- 12.14
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x16b898a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x16b898af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x16b898b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x16b898c10>", "_build": "<function ActorCriticPolicy._build at 0x16b898ca0>", "forward": "<function ActorCriticPolicy.forward at 0x16b898d30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x16b898dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x16b898e50>", "_predict": "<function ActorCriticPolicy._predict at 0x16b898ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x16b898f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x16b899000>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x16b899090>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x16b1f9cc0>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "num_timesteps": 10027008, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672397584478623000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVnAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMai9Vc2Vycy9wYXVsLy5weWVudi92ZXJzaW9ucy9tbC1zdHVmZi0zXzEwXzgvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuBQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAFYflD5XfUo/1R9cPdE2Mb9eaQg/m9dbvQAAAAAAAAAAPlulvshRgT/GKUu+NwIRvxvYI786i2e9AAAAAAAAAABC/Zm+p2ZFPxe/Lz5+7wm/1ZjPvl1cqT4AAAAAAAAAAKZPPr4kI80+7mtMPOD8ML8gjpa+unaqPQAAAAAAAAAAmm0gvryWuD5O6X0+fAc6v8JiRr7WR0c+AAAAAAAAAAAa6ak9riGJuoYgz7Ox1AGvWPqiOr9krDMAAIA/AACAPzMrnrya4xQ/O578PPw6d79iqam8k289PQAAAAAAAAAAgGl5vWnhE7wo8UI9bdOoPPyF6TyOOC67AACAPwAAgD+a54Y9PZpHuRCeIL2zbQq8QLy2OZKs8rwAAAAAAACAP7PKCD264L4/+q7fPYESgL4nELm71xeqPAAAAAAAAAAAep8YPvNIbT8pz48+u+VGvxo3sD42sxk+AAAAAAAAAAAGiVY+3NWXPy5NBT9KXR+/KDflPnWRiz4AAAAAAAAAAPp7Az41Skc+URIPvt4HLL/6Iz0+ksXIvQAAAAAAAAAAM4QWvYN/Zbxx8RA+l1EXPWmExT0dddO9AACAPwAAgD8g6jW+Z1umPtsBqD6i3Se/HwymvdOAED4AAAAAAAAAAE2IPD3kAKM/74MdPlHvEr8v7zU85fCVPQAAAAAAAAAAhh4Mvl1/HT46O4I+EA32vpNPQL3Ova09AAAAAAAAAADap7I9rnepOYpDer4uFQm+2IWPvWIPUz8AAIA/AAAAAAAIlz0UaKQ/GxrtPnlzE7/CgZY9zD2tPgAAAAAAAAAAulxLvu/GVD+u2XS+Nks/v6fjx76KxhE9AAAAAAAAAADzIRu+LUC4PibOFT0pRCC/soI1vhv+bD0AAAAAAAAAAADu1bw7oIQ+UP1bPcYTQ78l5uG8JikvuwAAAAAAAAAAmg3WPF4ysD8khyQ/FBvYvh9BkbyYmOK8AAAAAAAAAAAT/lo+4apPP9as3Dz1yym/lzPKPjSWl70AAAAAAAAAAM1CjD22Ozi8I1x8vh04R76Xgyu8gg8RPwAAgD8AAIA/gGhmPcKbpz9d1bU+wnn9vih5kD2BnYg+AAAAAAAAAAAaWtg90tDJPCa3Qb7hJoO+8MA2Pl6qKLsAAAAAAAAAAGbSjT0JbVY9GdknvhN4w75wwue8sqU/vgAAAAAAAAAAQMcOPqhl1D06mAO/pSfUvjJH7724vaa+AAAAAAAAAAAz51c8Hx3suX0iNTWR8e4vet6Ju0PxVLQAAIA/AACAP06CkL5rYfk+1qgpPib4+r786Nq+1XZnPgAAAAAAAAAAWnurva4f1zn6TbC8HeVvO2UmTDobskA9AAAAAAAAAADNM5y9SFeWui6zDjmrAl4zLjcturAEIrgAAIA/AACAP83dIb1IF6m6rWljPHP4IDkXDSe6Ex4WOAAAgD8AAIA/c7cNvtwQtz938RS/1yRpvsM/Dr46BdS+AAAAAAAAAAAzx0W8luqwP2tWmr4M7Le+vIAGPGBF/TwAAAAAAAAAAAbSAj7cWwg9smvdvsx3nr6Oefq9MuWXvgAAAAAAAAAAGvdmveF0kboTGbU7ulmAOSrk37oCtXY4AACAPwAAgD+atI+95LH/PiehNbyi2Gy/j5qovarf77wAAAAAAAAAAGaeRDzVNac/LnynPa4M/r5dqL46Wqu2uwAAAAAAAAAA5jnkPSSfgD2LzqK+UQnjvpppKD7d/OK9AAAAAAAAAACKOpC+n1lTP8Ioir3Lny2/7t/evg1cLz0AAAAAAAAAABog5r3JUzQ9AqPDPmINkL4Osj++cjrsPQAAAAAAAAAATbNjva5Zlrrq1rSyKqTyrmopwrp9jj0zAACAPwAAgD+a6zE+t1GCP07Zij6lJFm/OlehPh0o7z0AAAAAAAAAABrGtb2HcBI/Kdo6vQD/Xr8WpNi9eovnPAAAAAAAAAAAACYlPOHkorpGi5Q1jSLfMGZn7TkMN660AACAPwAAgD9mACS9qflRvAVp0zuqKS49xX5kO+uE1bcAAIA/AACAP+Z85r2Cbrk/ov3TvpdIir6awYC9zRrpvQAAAAAAAAAApkWrvV9HhjznML8+VKGXvvNLCj5CgQE+AAAAAAAAAACmSYG97FmiuTToCrNN/j+qfZhAO18dgTMAAIA/AACAPw314j3T6l0/7fyIPha1eb+01Yk+4LkAPgAAAAAAAAAAxnkGvmWqbj/sjpq+3sRiv32xhb7AzAq+AAAAAAAAAAAAuQU99ux2uoonX7mRWFO0Ot9jOmeqgjgAAIA/AACAP42XJD7wS4M+zuyovmB5LL8Rd0g9luswvgAAAAAAAAAA2tCBvXu0griPmS+4nr8Xs+Q7yjkjWVE3AACAPwAAgD+NUao9hcvBuRBwZL4cD+u9POgxPZOWeD8AAIA/AACAP5qBozyWrK4/dYCKPgouv75DEAe6mOprPQAAAAAAAAAATSsivVxXOD0SX+49W2revrOse71yneg8AAAAAAAAAACaqPc91LE9Pq6Mpr1m1A6/13tvPZJIkL0AAAAAAAAAAM18dTxCuKE/2ubxPYB6Mb9pt0I8Az4vPQAAAAAAAAAAZtO4Pex6k7tbxjq+7CPYPJmD2rtGE6C9AACAPwAAgD+axza81MiqP44LGb4OFBG/ApCKOSzUIL0AAAAAAAAAAJoCqz1cEx26yiU6s9CXNbAvtsE6qN3QMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIS3ZsBGL4c0CUhpRSlIwBbJRLoYwBdJRHQLIqSvIfbK11fZQoaAZoCWgPQwhRvqCFxGpwQJSGlFKUaBVLmWgWR0CyKklmvnr6dX2UKGgGaAloD0MIQKTfvg7ucUCUhpRSlGgVS6xoFkdAsipM93bEgnV9lChoBmgJaA9DCIo+H2VEhXFAlIaUUpRoFUucaBZHQLIqS/oaDPJ1fZQoaAZoCWgPQwiPGhNiLq1yQJSGlFKUaBVLn2gWR0CyKk/114gSdX2UKGgGaAloD0MIFM/ZAsLvcUCUhpRSlGgVS4RoFkdAsipa0w8GLXV9lChoBmgJaA9DCMB2MGKfM3JAlIaUUpRoFUuhaBZHQLIqXfPomol1fZQoaAZoCWgPQwhS0sPQ6ohxQJSGlFKUaBVLpmgWR0CyKmeZ1FH8dX2UKGgGaAloD0MIhnZOs4DwcUCUhpRSlGgVS4BoFkdAsipsJJGvwHV9lChoBmgJaA9DCPWB5J0D8XNAlIaUUpRoFUvCaBZHQLIqdF9a2Wp1fZQoaAZoCWgPQwgrE36p32VyQJSGlFKUaBVLpWgWR0CyKnvSc9W7dX2UKGgGaAloD0MIVp5A2KkmcUCUhpRSlGgVS6ZoFkdAsiqCN6w+uHV9lChoBmgJaA9DCJZdMLimJnBAlIaUUpRoFUufaBZHQLIqhYoRZlp1fZQoaAZoCWgPQwgoJ9pViO1xQJSGlFKUaBVLimgWR0CyKoa5CngpdX2UKGgGaAloD0MIw/S9hqDrcUCUhpRSlGgVS5VoFkdAsiqNVXFLnXV9lChoBmgJaA9DCC0+BcD4S3FAlIaUUpRoFUuFaBZHQLIqk/nnuAt1fZQoaAZoCWgPQwjbMAqCh1pyQJSGlFKUaBVLimgWR0CyKpxVQyh0dX2UKGgGaAloD0MIR450BsZOc0CUhpRSlGgVS8FoFkdAsiqlxVAAyXV9lChoBmgJaA9DCPje36C9nnFAlIaUUpRoFUueaBZHQLIqqWpqASZ1fZQoaAZoCWgPQwgEdjV5inVxQJSGlFKUaBVLmGgWR0CyKqeG47RwdX2UKGgGaAloD0MIJjeKrHUdc0CUhpRSlGgVS7ZoFkdAsiqp8rqdH3V9lChoBmgJaA9DCB5Td2UXRnRAlIaUUpRoFUu6aBZHQLIqtKFqSHN1fZQoaAZoCWgPQwhVoBaDByVyQJSGlFKUaBVLsWgWR0CyKsJjlPrOdX2UKGgGaAloD0MIM8FwruEKc0CUhpRSlGgVS7toFkdAsirQdeY2KnV9lChoBmgJaA9DCAjL2NANa3JAlIaUUpRoFUuyaBZHQLIq1ZiuuA91fZQoaAZoCWgPQwjH9lrQ+zN0QJSGlFKUaBVLrGgWR0CyKtzVc2R8dX2UKGgGaAloD0MIj1GeeXkocUCUhpRSlGgVS4loFkdAsirntx+8XnV9lChoBmgJaA9DCM+FkV4UF3BAlIaUUpRoFUuMaBZHQLIq7aaTfSB1fZQoaAZoCWgPQwhTk+AN6aNzQJSGlFKUaBVLr2gWR0CyKvLIkqtpdX2UKGgGaAloD0MIeA360hsTcUCUhpRSlGgVS6JoFkdAsir1IPK+z3V9lChoBmgJaA9DCKWEYFU9KXJAlIaUUpRoFUupaBZHQLIrCdjXnQp1fZQoaAZoCWgPQwjAIypUN0ZxQJSGlFKUaBVLlGgWR0CyKwkUGmk4dX2UKGgGaAloD0MIiPGaV/X2cUCUhpRSlGgVS8BoFkdAsisPIOpbU3V9lChoBmgJaA9DCJiiXBp/MnJAlIaUUpRoFUujaBZHQLIrE+QlruZ1fZQoaAZoCWgPQwgzb9V16K1yQJSGlFKUaBVLtWgWR0CyKxjCDVYqdX2UKGgGaAloD0MIIZIhx5ZZc0CUhpRSlGgVS5toFkdAsisec7Qsw3V9lChoBmgJaA9DCF/waU5ey3BAlIaUUpRoFUuraBZHQLIrHjPOY6Z1fZQoaAZoCWgPQwjH1jOEY9BBQJSGlFKUaBVLX2gWR0CyKynEMspYdX2UKGgGaAloD0MIQGt+/CXLc0CUhpRSlGgVS7poFkdAsiswXk5p8HV9lChoBmgJaA9DCFyv6UEBG3BAlIaUUpRoFUuFaBZHQLIrPAS39aV1fZQoaAZoCWgPQwh7oYDtoNVxQJSGlFKUaBVLqWgWR0CyK0DwUg0TdX2UKGgGaAloD0MIE5oklpRBdECUhpRSlGgVS5toFkdAsitAcOskp3V9lChoBmgJaA9DCJon1xQI8HFAlIaUUpRoFUumaBZHQLIrQENvwVl1fZQoaAZoCWgPQwiYbDzY4pdxQJSGlFKUaBVLhGgWR0CyK0aG+K0ldX2UKGgGaAloD0MI/wWCAJlbc0CUhpRSlGgVS8doFkdAsitKgxrSE3V9lChoBmgJaA9DCN+/eXFilnNAlIaUUpRoFUvFaBZHQLIrUW1c+q11fZQoaAZoCWgPQwg57L5jOPJwQJSGlFKUaBVLrGgWR0CyK1NTkyULdX2UKGgGaAloD0MIilWDMHdockCUhpRSlGgVS6JoFkdAsitWBRQ793V9lChoBmgJaA9DCNs2jIKgbnJAlIaUUpRoFUusaBZHQLIrZ9UCJXR1fZQoaAZoCWgPQwgbYrzm1VJxQJSGlFKUaBVLf2gWR0CyK3AXl8w6dX2UKGgGaAloD0MIYobGE4FPc0CUhpRSlGgVS8FoFkdAsit4cm0E5nV9lChoBmgJaA9DCB4Wak3zJXJAlIaUUpRoFUu8aBZHQLIreufmLcd1fZQoaAZoCWgPQwi2Dg72Zn9zQJSGlFKUaBVLlWgWR0CyK4s6BAfMdX2UKGgGaAloD0MIaqSl8rZbcUCUhpRSlGgVS51oFkdAsiuNtpEhJXV9lChoBmgJaA9DCJ/leXB3BHJAlIaUUpRoFUuqaBZHQLIrkWX1J191fZQoaAZoCWgPQwhX6lkQCnFyQJSGlFKUaBVLsmgWR0CyK5Tebd8BdX2UKGgGaAloD0MIQ1n4+pr0cECUhpRSlGgVS55oFkdAsiuUfvF3p3V9lChoBmgJaA9DCBA7U+g8tm9AlIaUUpRoFUuGaBZHQLIrluPmxMZ1fZQoaAZoCWgPQwhz275H/bBzQJSGlFKUaBVLqWgWR0CyK5mkzoECdX2UKGgGaAloD0MIFk1nJwPTckCUhpRSlGgVS4loFkdAsiuctvn8sXV9lChoBmgJaA9DCPKZ7J8nSnNAlIaUUpRoFUvCaBZHQLIrn8vmHQB1fZQoaAZoCWgPQwhb64uE9qVyQJSGlFKUaBVLqmgWR0CyK6oPkJa8dX2UKGgGaAloD0MIPE1mvC0TckCUhpRSlGgVS31oFkdAsiuoXizcAXV9lChoBmgJaA9DCJHu5xSkSHFAlIaUUpRoFUuQaBZHQLIrsIzFdcB1fZQoaAZoCWgPQwhnYORlTeNwQJSGlFKUaBVLrGgWR0CyK7JGax5cdX2UKGgGaAloD0MIuynltVLicECUhpRSlGgVS41oFkdAsiuz5ZbILnV9lChoBmgJaA9DCC+FB83u7HBAlIaUUpRoFUuIaBZHQLIruPoFFDx1fZQoaAZoCWgPQwhOKETAoSxyQJSGlFKUaBVLimgWR0CyK9HlGPPtdX2UKGgGaAloD0MIkZkLXN7ocECUhpRSlGgVS6NoFkdAsivV4FA3UHV9lChoBmgJaA9DCDylg/X/bnNAlIaUUpRoFUu3aBZHQLIr20HhS+B1fZQoaAZoCWgPQwjYt5OIcHFvQJSGlFKUaBVLhmgWR0CyK+GAkLQYdX2UKGgGaAloD0MITFRvDazAckCUhpRSlGgVS6loFkdAsivmq3mV7nV9lChoBmgJaA9DCCeJJeVuS3BAlIaUUpRoFUuUaBZHQLIr5LaVUuN1fZQoaAZoCWgPQwjAtKhP8nBzQJSGlFKUaBVLwmgWR0CyK+06Lfk4dX2UKGgGaAloD0MIbNCX3j7Hc0CUhpRSlGgVS8VoFkdAsivsnb7CSHV9lChoBmgJaA9DCIy8rImF/29AlIaUUpRoFUuWaBZHQLIr8i7Ciyp1fZQoaAZoCWgPQwhYHM78Ki9xQJSGlFKUaBVLeWgWR0CyK/gZbY9QdX2UKGgGaAloD0MIETY8vRJ3cECUhpRSlGgVS45oFkdAsiv+rZJ04nV9lChoBmgJaA9DCFg6H54lYHNAlIaUUpRoFUuyaBZHQLIsCvh60IF1fZQoaAZoCWgPQwjkwKvljmJxQJSGlFKUaBVLo2gWR0CyLBQxSHdodX2UKGgGaAloD0MIkzfAzLf+cECUhpRSlGgVS5hoFkdAsiwSOinHenV9lChoBmgJaA9DCLwEpz4QInNAlIaUUpRoFUubaBZHQLIsGsP8Q7N1fZQoaAZoCWgPQwigG5qy071vQJSGlFKUaBVLk2gWR0CyLCtpRGc4dX2UKGgGaAloD0MI3SVxVkTscUCUhpRSlGgVS6toFkdAsiwrCgsbvXV9lChoBmgJaA9DCKIKf4Z3CnBAlIaUUpRoFUuMaBZHQLIsOVoHs1N1fZQoaAZoCWgPQwhBKzBkNYFxQJSGlFKUaBVLn2gWR0CyLDlocrAhdX2UKGgGaAloD0MIFsJqLCF3c0CUhpRSlGgVS8ZoFkdAsiw/mig00nV9lChoBmgJaA9DCIofY+5agHJAlIaUUpRoFUunaBZHQLIsP64UeuF1fZQoaAZoCWgPQwhrfvylBbdyQJSGlFKUaBVLv2gWR0CyLEtoSL62dX2UKGgGaAloD0MI7BhXXFw6cUCUhpRSlGgVS5poFkdAsixPvqkdm3V9lChoBmgJaA9DCNNsHofB+m9AlIaUUpRoFUufaBZHQLIsUMQmNR51fZQoaAZoCWgPQwgvxOqPMHlxQJSGlFKUaBVLimgWR0CyLFzrNW2gdX2UKGgGaAloD0MI8rImFnjCcUCUhpRSlGgVS35oFkdAsixrdTHbRHV9lChoBmgJaA9DCJdYGY18fhhAlIaUUpRoFUtgaBZHQLIsbsjVx0d1fZQoaAZoCWgPQwigwhGk0i50QJSGlFKUaBVLwWgWR0CyLG6ePJaJdX2UKGgGaAloD0MIRZvj3CZicUCUhpRSlGgVS6NoFkdAsixymbb1y3V9lChoBmgJaA9DCK4QVmOJnXNAlIaUUpRoFUuraBZHQLIsfnctXgd1fZQoaAZoCWgPQwh8mL1se3pxQJSGlFKUaBVLoGgWR0CyLH53X7LudX2UKGgGaAloD0MIih9j7hoackCUhpRSlGgVS4toFkdAsiyHMMZxaXV9lChoBmgJaA9DCEJ3SZxVe3FAlIaUUpRoFUujaBZHQLIshumJm/Z1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1530, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.97, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVnAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMai9Vc2Vycy9wYXVsLy5weWVudi92ZXJzaW9ucy9tbC1zdHVmZi0zXzEwXzgvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuBQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-13.1-arm64-arm-64bit Darwin Kernel Version 22.2.0: Fri Nov 11 02:03:51 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T6000", "Python": "3.10.8", "Stable-Baselines3": "2.0.0a0", "PyTorch": "1.13.0", "GPU Enabled": "False", "Numpy": "1.23.5", "Gym": "0.27.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x15e498af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x15e498b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x15e498c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x15e498ca0>", "_build": "<function ActorCriticPolicy._build at 0x15e498d30>", "forward": "<function ActorCriticPolicy.forward at 0x15e498dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x15e498e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x15e498ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x15e498f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x15e499000>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x15e499090>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x15e499120>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x15e4b8140>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "num_timesteps": 10027008, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672397584478623000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVnAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMai9Vc2Vycy9wYXVsLy5weWVudi92ZXJzaW9ucy9tbC1zdHVmZi0zXzEwXzgvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuBQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAFYflD5XfUo/1R9cPdE2Mb9eaQg/m9dbvQAAAAAAAAAAPlulvshRgT/GKUu+NwIRvxvYI786i2e9AAAAAAAAAABC/Zm+p2ZFPxe/Lz5+7wm/1ZjPvl1cqT4AAAAAAAAAAKZPPr4kI80+7mtMPOD8ML8gjpa+unaqPQAAAAAAAAAAmm0gvryWuD5O6X0+fAc6v8JiRr7WR0c+AAAAAAAAAAAa6ak9riGJuoYgz7Ox1AGvWPqiOr9krDMAAIA/AACAPzMrnrya4xQ/O578PPw6d79iqam8k289PQAAAAAAAAAAgGl5vWnhE7wo8UI9bdOoPPyF6TyOOC67AACAPwAAgD+a54Y9PZpHuRCeIL2zbQq8QLy2OZKs8rwAAAAAAACAP7PKCD264L4/+q7fPYESgL4nELm71xeqPAAAAAAAAAAAep8YPvNIbT8pz48+u+VGvxo3sD42sxk+AAAAAAAAAAAGiVY+3NWXPy5NBT9KXR+/KDflPnWRiz4AAAAAAAAAAPp7Az41Skc+URIPvt4HLL/6Iz0+ksXIvQAAAAAAAAAAM4QWvYN/Zbxx8RA+l1EXPWmExT0dddO9AACAPwAAgD8g6jW+Z1umPtsBqD6i3Se/HwymvdOAED4AAAAAAAAAAE2IPD3kAKM/74MdPlHvEr8v7zU85fCVPQAAAAAAAAAAhh4Mvl1/HT46O4I+EA32vpNPQL3Ova09AAAAAAAAAADap7I9rnepOYpDer4uFQm+2IWPvWIPUz8AAIA/AAAAAAAIlz0UaKQ/GxrtPnlzE7/CgZY9zD2tPgAAAAAAAAAAulxLvu/GVD+u2XS+Nks/v6fjx76KxhE9AAAAAAAAAADzIRu+LUC4PibOFT0pRCC/soI1vhv+bD0AAAAAAAAAAADu1bw7oIQ+UP1bPcYTQ78l5uG8JikvuwAAAAAAAAAAmg3WPF4ysD8khyQ/FBvYvh9BkbyYmOK8AAAAAAAAAAAT/lo+4apPP9as3Dz1yym/lzPKPjSWl70AAAAAAAAAAM1CjD22Ozi8I1x8vh04R76Xgyu8gg8RPwAAgD8AAIA/gGhmPcKbpz9d1bU+wnn9vih5kD2BnYg+AAAAAAAAAAAaWtg90tDJPCa3Qb7hJoO+8MA2Pl6qKLsAAAAAAAAAAGbSjT0JbVY9GdknvhN4w75wwue8sqU/vgAAAAAAAAAAQMcOPqhl1D06mAO/pSfUvjJH7724vaa+AAAAAAAAAAAz51c8Hx3suX0iNTWR8e4vet6Ju0PxVLQAAIA/AACAP06CkL5rYfk+1qgpPib4+r786Nq+1XZnPgAAAAAAAAAAWnurva4f1zn6TbC8HeVvO2UmTDobskA9AAAAAAAAAADNM5y9SFeWui6zDjmrAl4zLjcturAEIrgAAIA/AACAP83dIb1IF6m6rWljPHP4IDkXDSe6Ex4WOAAAgD8AAIA/c7cNvtwQtz938RS/1yRpvsM/Dr46BdS+AAAAAAAAAAAzx0W8luqwP2tWmr4M7Le+vIAGPGBF/TwAAAAAAAAAAAbSAj7cWwg9smvdvsx3nr6Oefq9MuWXvgAAAAAAAAAAGvdmveF0kboTGbU7ulmAOSrk37oCtXY4AACAPwAAgD+atI+95LH/PiehNbyi2Gy/j5qovarf77wAAAAAAAAAAGaeRDzVNac/LnynPa4M/r5dqL46Wqu2uwAAAAAAAAAA5jnkPSSfgD2LzqK+UQnjvpppKD7d/OK9AAAAAAAAAACKOpC+n1lTP8Ioir3Lny2/7t/evg1cLz0AAAAAAAAAABog5r3JUzQ9AqPDPmINkL4Osj++cjrsPQAAAAAAAAAATbNjva5Zlrrq1rSyKqTyrmopwrp9jj0zAACAPwAAgD+a6zE+t1GCP07Zij6lJFm/OlehPh0o7z0AAAAAAAAAABrGtb2HcBI/Kdo6vQD/Xr8WpNi9eovnPAAAAAAAAAAAACYlPOHkorpGi5Q1jSLfMGZn7TkMN660AACAPwAAgD9mACS9qflRvAVp0zuqKS49xX5kO+uE1bcAAIA/AACAP+Z85r2Cbrk/ov3TvpdIir6awYC9zRrpvQAAAAAAAAAApkWrvV9HhjznML8+VKGXvvNLCj5CgQE+AAAAAAAAAACmSYG97FmiuTToCrNN/j+qfZhAO18dgTMAAIA/AACAPw314j3T6l0/7fyIPha1eb+01Yk+4LkAPgAAAAAAAAAAxnkGvmWqbj/sjpq+3sRiv32xhb7AzAq+AAAAAAAAAAAAuQU99ux2uoonX7mRWFO0Ot9jOmeqgjgAAIA/AACAP42XJD7wS4M+zuyovmB5LL8Rd0g9luswvgAAAAAAAAAA2tCBvXu0griPmS+4nr8Xs+Q7yjkjWVE3AACAPwAAgD+NUao9hcvBuRBwZL4cD+u9POgxPZOWeD8AAIA/AACAP5qBozyWrK4/dYCKPgouv75DEAe6mOprPQAAAAAAAAAATSsivVxXOD0SX+49W2revrOse71yneg8AAAAAAAAAACaqPc91LE9Pq6Mpr1m1A6/13tvPZJIkL0AAAAAAAAAAM18dTxCuKE/2ubxPYB6Mb9pt0I8Az4vPQAAAAAAAAAAZtO4Pex6k7tbxjq+7CPYPJmD2rtGE6C9AACAPwAAgD+axza81MiqP44LGb4OFBG/ApCKOSzUIL0AAAAAAAAAAJoCqz1cEx26yiU6s9CXNbAvtsE6qN3QMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIS3ZsBGL4c0CUhpRSlIwBbJRLoYwBdJRHQLIqSvIfbK11fZQoaAZoCWgPQwhRvqCFxGpwQJSGlFKUaBVLmWgWR0CyKklmvnr6dX2UKGgGaAloD0MIQKTfvg7ucUCUhpRSlGgVS6xoFkdAsipM93bEgnV9lChoBmgJaA9DCIo+H2VEhXFAlIaUUpRoFUucaBZHQLIqS/oaDPJ1fZQoaAZoCWgPQwiPGhNiLq1yQJSGlFKUaBVLn2gWR0CyKk/114gSdX2UKGgGaAloD0MIFM/ZAsLvcUCUhpRSlGgVS4RoFkdAsipa0w8GLXV9lChoBmgJaA9DCMB2MGKfM3JAlIaUUpRoFUuhaBZHQLIqXfPomol1fZQoaAZoCWgPQwhS0sPQ6ohxQJSGlFKUaBVLpmgWR0CyKmeZ1FH8dX2UKGgGaAloD0MIhnZOs4DwcUCUhpRSlGgVS4BoFkdAsipsJJGvwHV9lChoBmgJaA9DCPWB5J0D8XNAlIaUUpRoFUvCaBZHQLIqdF9a2Wp1fZQoaAZoCWgPQwgrE36p32VyQJSGlFKUaBVLpWgWR0CyKnvSc9W7dX2UKGgGaAloD0MIVp5A2KkmcUCUhpRSlGgVS6ZoFkdAsiqCN6w+uHV9lChoBmgJaA9DCJZdMLimJnBAlIaUUpRoFUufaBZHQLIqhYoRZlp1fZQoaAZoCWgPQwgoJ9pViO1xQJSGlFKUaBVLimgWR0CyKoa5CngpdX2UKGgGaAloD0MIw/S9hqDrcUCUhpRSlGgVS5VoFkdAsiqNVXFLnXV9lChoBmgJaA9DCC0+BcD4S3FAlIaUUpRoFUuFaBZHQLIqk/nnuAt1fZQoaAZoCWgPQwjbMAqCh1pyQJSGlFKUaBVLimgWR0CyKpxVQyh0dX2UKGgGaAloD0MIR450BsZOc0CUhpRSlGgVS8FoFkdAsiqlxVAAyXV9lChoBmgJaA9DCPje36C9nnFAlIaUUpRoFUueaBZHQLIqqWpqASZ1fZQoaAZoCWgPQwgEdjV5inVxQJSGlFKUaBVLmGgWR0CyKqeG47RwdX2UKGgGaAloD0MIJjeKrHUdc0CUhpRSlGgVS7ZoFkdAsiqp8rqdH3V9lChoBmgJaA9DCB5Td2UXRnRAlIaUUpRoFUu6aBZHQLIqtKFqSHN1fZQoaAZoCWgPQwhVoBaDByVyQJSGlFKUaBVLsWgWR0CyKsJjlPrOdX2UKGgGaAloD0MIM8FwruEKc0CUhpRSlGgVS7toFkdAsirQdeY2KnV9lChoBmgJaA9DCAjL2NANa3JAlIaUUpRoFUuyaBZHQLIq1ZiuuA91fZQoaAZoCWgPQwjH9lrQ+zN0QJSGlFKUaBVLrGgWR0CyKtzVc2R8dX2UKGgGaAloD0MIj1GeeXkocUCUhpRSlGgVS4loFkdAsirntx+8XnV9lChoBmgJaA9DCM+FkV4UF3BAlIaUUpRoFUuMaBZHQLIq7aaTfSB1fZQoaAZoCWgPQwhTk+AN6aNzQJSGlFKUaBVLr2gWR0CyKvLIkqtpdX2UKGgGaAloD0MIeA360hsTcUCUhpRSlGgVS6JoFkdAsir1IPK+z3V9lChoBmgJaA9DCKWEYFU9KXJAlIaUUpRoFUupaBZHQLIrCdjXnQp1fZQoaAZoCWgPQwjAIypUN0ZxQJSGlFKUaBVLlGgWR0CyKwkUGmk4dX2UKGgGaAloD0MIiPGaV/X2cUCUhpRSlGgVS8BoFkdAsisPIOpbU3V9lChoBmgJaA9DCJiiXBp/MnJAlIaUUpRoFUujaBZHQLIrE+QlruZ1fZQoaAZoCWgPQwgzb9V16K1yQJSGlFKUaBVLtWgWR0CyKxjCDVYqdX2UKGgGaAloD0MIIZIhx5ZZc0CUhpRSlGgVS5toFkdAsisec7Qsw3V9lChoBmgJaA9DCF/waU5ey3BAlIaUUpRoFUuraBZHQLIrHjPOY6Z1fZQoaAZoCWgPQwjH1jOEY9BBQJSGlFKUaBVLX2gWR0CyKynEMspYdX2UKGgGaAloD0MIQGt+/CXLc0CUhpRSlGgVS7poFkdAsiswXk5p8HV9lChoBmgJaA9DCFyv6UEBG3BAlIaUUpRoFUuFaBZHQLIrPAS39aV1fZQoaAZoCWgPQwh7oYDtoNVxQJSGlFKUaBVLqWgWR0CyK0DwUg0TdX2UKGgGaAloD0MIE5oklpRBdECUhpRSlGgVS5toFkdAsitAcOskp3V9lChoBmgJaA9DCJon1xQI8HFAlIaUUpRoFUumaBZHQLIrQENvwVl1fZQoaAZoCWgPQwiYbDzY4pdxQJSGlFKUaBVLhGgWR0CyK0aG+K0ldX2UKGgGaAloD0MI/wWCAJlbc0CUhpRSlGgVS8doFkdAsitKgxrSE3V9lChoBmgJaA9DCN+/eXFilnNAlIaUUpRoFUvFaBZHQLIrUW1c+q11fZQoaAZoCWgPQwg57L5jOPJwQJSGlFKUaBVLrGgWR0CyK1NTkyULdX2UKGgGaAloD0MIilWDMHdockCUhpRSlGgVS6JoFkdAsitWBRQ793V9lChoBmgJaA9DCNs2jIKgbnJAlIaUUpRoFUusaBZHQLIrZ9UCJXR1fZQoaAZoCWgPQwgbYrzm1VJxQJSGlFKUaBVLf2gWR0CyK3AXl8w6dX2UKGgGaAloD0MIYobGE4FPc0CUhpRSlGgVS8FoFkdAsit4cm0E5nV9lChoBmgJaA9DCB4Wak3zJXJAlIaUUpRoFUu8aBZHQLIreufmLcd1fZQoaAZoCWgPQwi2Dg72Zn9zQJSGlFKUaBVLlWgWR0CyK4s6BAfMdX2UKGgGaAloD0MIaqSl8rZbcUCUhpRSlGgVS51oFkdAsiuNtpEhJXV9lChoBmgJaA9DCJ/leXB3BHJAlIaUUpRoFUuqaBZHQLIrkWX1J191fZQoaAZoCWgPQwhX6lkQCnFyQJSGlFKUaBVLsmgWR0CyK5Tebd8BdX2UKGgGaAloD0MIQ1n4+pr0cECUhpRSlGgVS55oFkdAsiuUfvF3p3V9lChoBmgJaA9DCBA7U+g8tm9AlIaUUpRoFUuGaBZHQLIrluPmxMZ1fZQoaAZoCWgPQwhz275H/bBzQJSGlFKUaBVLqWgWR0CyK5mkzoECdX2UKGgGaAloD0MIFk1nJwPTckCUhpRSlGgVS4loFkdAsiuctvn8sXV9lChoBmgJaA9DCPKZ7J8nSnNAlIaUUpRoFUvCaBZHQLIrn8vmHQB1fZQoaAZoCWgPQwhb64uE9qVyQJSGlFKUaBVLqmgWR0CyK6oPkJa8dX2UKGgGaAloD0MIPE1mvC0TckCUhpRSlGgVS31oFkdAsiuoXizcAXV9lChoBmgJaA9DCJHu5xSkSHFAlIaUUpRoFUuQaBZHQLIrsIzFdcB1fZQoaAZoCWgPQwhnYORlTeNwQJSGlFKUaBVLrGgWR0CyK7JGax5cdX2UKGgGaAloD0MIuynltVLicECUhpRSlGgVS41oFkdAsiuz5ZbILnV9lChoBmgJaA9DCC+FB83u7HBAlIaUUpRoFUuIaBZHQLIruPoFFDx1fZQoaAZoCWgPQwhOKETAoSxyQJSGlFKUaBVLimgWR0CyK9HlGPPtdX2UKGgGaAloD0MIkZkLXN7ocECUhpRSlGgVS6NoFkdAsivV4FA3UHV9lChoBmgJaA9DCDylg/X/bnNAlIaUUpRoFUu3aBZHQLIr20HhS+B1fZQoaAZoCWgPQwjYt5OIcHFvQJSGlFKUaBVLhmgWR0CyK+GAkLQYdX2UKGgGaAloD0MITFRvDazAckCUhpRSlGgVS6loFkdAsivmq3mV7nV9lChoBmgJaA9DCCeJJeVuS3BAlIaUUpRoFUuUaBZHQLIr5LaVUuN1fZQoaAZoCWgPQwjAtKhP8nBzQJSGlFKUaBVLwmgWR0CyK+06Lfk4dX2UKGgGaAloD0MIbNCX3j7Hc0CUhpRSlGgVS8VoFkdAsivsnb7CSHV9lChoBmgJaA9DCIy8rImF/29AlIaUUpRoFUuWaBZHQLIr8i7Ciyp1fZQoaAZoCWgPQwhYHM78Ki9xQJSGlFKUaBVLeWgWR0CyK/gZbY9QdX2UKGgGaAloD0MIETY8vRJ3cECUhpRSlGgVS45oFkdAsiv+rZJ04nV9lChoBmgJaA9DCFg6H54lYHNAlIaUUpRoFUuyaBZHQLIsCvh60IF1fZQoaAZoCWgPQwjkwKvljmJxQJSGlFKUaBVLo2gWR0CyLBQxSHdodX2UKGgGaAloD0MIkzfAzLf+cECUhpRSlGgVS5hoFkdAsiwSOinHenV9lChoBmgJaA9DCLwEpz4QInNAlIaUUpRoFUubaBZHQLIsGsP8Q7N1fZQoaAZoCWgPQwigG5qy071vQJSGlFKUaBVLk2gWR0CyLCtpRGc4dX2UKGgGaAloD0MI3SVxVkTscUCUhpRSlGgVS6toFkdAsiwrCgsbvXV9lChoBmgJaA9DCKIKf4Z3CnBAlIaUUpRoFUuMaBZHQLIsOVoHs1N1fZQoaAZoCWgPQwhBKzBkNYFxQJSGlFKUaBVLn2gWR0CyLDlocrAhdX2UKGgGaAloD0MIFsJqLCF3c0CUhpRSlGgVS8ZoFkdAsiw/mig00nV9lChoBmgJaA9DCIofY+5agHJAlIaUUpRoFUunaBZHQLIsP64UeuF1fZQoaAZoCWgPQwhrfvylBbdyQJSGlFKUaBVLv2gWR0CyLEtoSL62dX2UKGgGaAloD0MI7BhXXFw6cUCUhpRSlGgVS5poFkdAsixPvqkdm3V9lChoBmgJaA9DCNNsHofB+m9AlIaUUpRoFUufaBZHQLIsUMQmNR51fZQoaAZoCWgPQwgvxOqPMHlxQJSGlFKUaBVLimgWR0CyLFzrNW2gdX2UKGgGaAloD0MI8rImFnjCcUCUhpRSlGgVS35oFkdAsixrdTHbRHV9lChoBmgJaA9DCJdYGY18fhhAlIaUUpRoFUtgaBZHQLIsbsjVx0d1fZQoaAZoCWgPQwigwhGk0i50QJSGlFKUaBVLwWgWR0CyLG6ePJaJdX2UKGgGaAloD0MIRZvj3CZicUCUhpRSlGgVS6NoFkdAsixymbb1y3V9lChoBmgJaA9DCK4QVmOJnXNAlIaUUpRoFUuraBZHQLIsfnctXgd1fZQoaAZoCWgPQwh8mL1se3pxQJSGlFKUaBVLoGgWR0CyLH53X7LudX2UKGgGaAloD0MIih9j7hoackCUhpRSlGgVS4toFkdAsiyHMMZxaXV9lChoBmgJaA9DCEJ3SZxVe3FAlIaUUpRoFUujaBZHQLIshumJm/Z1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1530, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.97, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVnAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMai9Vc2Vycy9wYXVsLy5weWVudi92ZXJzaW9ucy9tbC1zdHVmZi0zXzEwXzgvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuBQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-13.1-arm64-arm-64bit Darwin Kernel Version 22.2.0: Fri Nov 11 02:03:51 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T6000", "Python": "3.10.8", "Stable-Baselines3": "2.0.0a0", "PyTorch": "1.13.0", "GPU Enabled": "False", "Numpy": "1.23.5", "Gym": "0.27.0"}}
ppo-LunarLander-v2-paulmest-2022-12-30_04-10-51-10000000.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:33d244caa93f7a2e81b0f5bd92d1e8f28ff6ff54ebd0246a9ac6e008f4ecd961
3
  size 149559
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f4d69f45fef24ec0b6862a7d54b9a15ef73dbfa8232ac34b0057499ee564993
3
  size 149559
ppo-LunarLander-v2-paulmest-2022-12-30_04-10-51-10000000/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x16b898a60>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x16b898af0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x16b898b80>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x16b898c10>",
11
- "_build": "<function ActorCriticPolicy._build at 0x16b898ca0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x16b898d30>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x16b898dc0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x16b898e50>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x16b898ee0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x16b898f70>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x16b899000>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x16b899090>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x16b1f9cc0>"
21
  },
22
  "verbose": 0,
23
  "policy_kwargs": {},
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x15e498af0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x15e498b80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x15e498c10>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x15e498ca0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x15e498d30>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x15e498dc0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x15e498e50>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x15e498ee0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x15e498f70>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x15e499000>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x15e499090>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x15e499120>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x15e4b8140>"
21
  },
22
  "verbose": 0,
23
  "policy_kwargs": {},
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 264.2281638194086, "std_reward": 82.76579931634137, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-30T14:46:50.547060"}
 
1
+ {"mean_reward": 304.1359039249032, "std_reward": 12.139198528176383, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-30T16:36:59.133945"}