DarshanDeshpande commited on
Commit
7d717d1
1 Parent(s): 83af613

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +123 -148
README.md CHANGED
@@ -1,199 +1,174 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
10
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
 
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
 
 
 
 
 
 
87
 
88
- #### Preprocessing [optional]
 
89
 
90
- [More Information Needed]
 
91
 
 
 
92
 
93
- #### Training Hyperparameters
 
 
 
 
 
 
 
 
 
 
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
 
 
100
 
101
- [More Information Needed]
 
 
102
 
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
 
129
- [More Information Needed]
 
130
 
131
- #### Summary
132
 
 
 
 
 
133
 
 
 
 
134
 
135
- ## Model Examination [optional]
 
 
 
 
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
 
 
 
140
 
141
- ## Environmental Impact
 
 
 
 
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
 
 
 
 
 
 
 
156
 
157
- [More Information Needed]
 
 
158
 
159
- ### Compute Infrastructure
 
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
192
 
193
- ## Model Card Authors [optional]
 
194
 
195
- [More Information Needed]
 
 
196
 
197
  ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - text-generation
5
+ - pytorch
6
+ - small-evaluator
7
+ - Patronus AI
8
+ - evaluation
9
+ - hallucination-detection
10
+ license: cc-by-nc-4.0
11
+ language:
12
+ - en
13
+ base_model:
14
+ - microsoft/Phi-3.5-mini-instruct
15
+ pipeline_tag: text-generation
16
  ---
17
 
18
+ # Patronus GLIDER
 
 
19
 
20
+ GLIDER is a fine tuned phi-3.5-mini-instruct which can be used as a general purpose evaluation model to judge texts, conversations and RAG setups according to arbitrary, user defined criteria and rubric scale.
21
+ This model was trained using a combination of synthetic and domain adapted data from popular datasets like Mocha, FinQA, Realtoxicity, etc. The training data for this model covers over 183 metrics and 683+ domains including finance, medicine, and many more.
22
+ The maximum sequence length is 8192 tokens but the model can support longer texts as well (tested upto 12,000 tokens).
23
 
24
 
25
  ## Model Details
26
 
27
+ - **Model Type:** GLIDER is a fine-tuned version of microsoft/Phi-3.5-mini-instruct model.
28
+ - **Language:** Primarily English but supports Korean, Kazakh, Hindi, Bengali, Spanish, Indonesian, German, French, Arabic, Russian, Thai, Turkish, Ukraninan, Romainian and more.
29
+ - **Developed by:** Patronus AI
30
+ - **Paper:** [TBD]
31
+ - **License:** [https://creativecommons.org/licenses/by-nc/4.0/](https://creativecommons.org/licenses/by-nc/4.0/)
 
 
 
 
 
 
 
 
32
 
33
+ ### Model Sources
34
 
35
  <!-- Provide the basic links for the model. -->
36
 
37
+ - **Repository:** [https://github.com/patronus-ai/slm-evaluator](https://github.com/patronus-ai/slm-evaluator)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
  ## How to Get Started with the Model
41
+ To use the model, we recommend using the following prompt:
42
 
43
+ ```
44
+ PROMPT = """Analyze the following pass criteria carefully and score the text based on the rubric defined below.
45
+
46
+ To perform this evaluation, you must:
 
 
 
 
 
 
 
 
 
47
 
48
+ 1. Understand the text tags, pass criteria and rubric thoroughly.
49
+ 2. Review the finer details of the text and the rubric.
50
+ 3. Compare the tags to be evaluated to the score descriptions in the rubric.
51
+ 4. Pay close attention to small details that might impact the final score and form accurate associations between tags and pass criteria.
52
+ 5. Write a detailed reasoning justifying your evaluation in a bullet point format.
53
+ 6. The reasoning must summarize the overall strengths and weaknesses of the output while quoting exact phrases from the output wherever required.
54
+ 7. Output a list of words or phrases that you believe are the most important in determining the score.
55
+ 8. Assign a final score based on the scoring rubric.
56
 
57
+ Data to evaluate:
58
+ {data}
59
 
60
+ Pass Criteria:
61
+ {pass_criteria}
62
 
63
+ Rubric:
64
+ {rubric}
65
 
66
+ Your output must in the following format:
67
+ <reasoning>
68
+ [Detailed reasoning justifying your evaluation in a bullet point format according to the specifics defined above]
69
+ </reasoning>
70
+ <highlight>
71
+ [List of words or phrases that you believe are the most important in determining the score]
72
+ </highlight>
73
+ <score>
74
+ [The final integer score assigned based on the scoring rubric]
75
+ </score>
76
+ ```
77
 
78
+ Since the model supports arbitrary number of inputs and outputs, the data can be structured in any one of the following ways:
79
 
80
+ 1. Conversational data:
81
 
82
+ ```
83
+ data = """<SYSTEM PROMPT>
84
+ {system_prompt}
85
+ </SYSTEM PROMPT>
86
 
87
+ <USER PROMPT>
88
+ {user_prompt}
89
+ </USER PROMPT>
90
 
91
+ <ASSISTANT REPLY>
92
+ {assistant_response}
93
+ </ASSISTANT REPLY>
94
+ """
95
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
 
97
+ This template can be adapted for arbitrary number of conversations by simply appending a numeric turn number as "<USER PROMPT 1>", "<USER PROMPT 2>" and so on.
98
+ Ensure that you specify the exact tags that you want the model to judge in the pass criteria
99
 
100
+ 2. RAG system evaluation
101
 
102
+ ```
103
+ data = """<CONTEXT>
104
+ {retrieved_context}
105
+ </CONTEXT>
106
 
107
+ <USER INPUT>
108
+ {user_input}
109
+ </USER INPUT>
110
 
111
+ <MODEL OUTPUT>
112
+ {model_output}
113
+ </MODEL OUTPUT>
114
+ """
115
+ ```
116
 
117
+ 3. General purpose evaluations
118
 
119
+ ```
120
+ data = """<USER INPUT>
121
+ {input}
122
+ </USER INPUT>
123
 
124
+ <MODEL OUTPUT>
125
+ {output}
126
+ </MODEL OUTPUT>
127
+ """
128
+ ```
129
 
130
+ Note that these XML tags can be changed according to your convenience and task
131
 
132
+ ## Inference
133
 
134
+ To run inference, you can use HF pipeline:
 
 
 
 
135
 
136
+ ```
137
 
138
+ model_name = 'PatronusAI/glider'
139
+ pipe = pipeline(
140
+ "text-generation",
141
+ model=model_name,
142
+ max_new_tokens=2048,
143
+ device="cuda",
144
+ return_full_text=False
145
+ )
146
 
147
+ messages = [
148
+ {"role": "user", "content": prompt},
149
+ ]
150
 
151
+ result = pipe(messages)
152
+ print(result[0]['generated_text'])
153
 
154
+ ```
155
 
156
+ Since the model is trained in chat format, ensure that you pass the prompt as a user message.
157
 
158
+ ## Evaluation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159
 
160
+ The model was evaluated on several popular datasets:
161
 
162
+ <img src="https://i.imgur.com/wsv3COh.png" alt="Likert Rating Results" width="50%"/>
163
+ <img src="https://i.imgur.com/xmxREho.png" alt="Pairwise Comparisons" width="50%"/>
164
 
165
+ ## Citation
166
+ If you are using the model, cite using
167
 
168
+ ```
169
+ [Paper citation]
170
+ ```
171
 
172
  ## Model Card Contact
173
+ [@darshandeshpande](https://huggingface.co/darshandeshpande)
174
+ [@RebeccaQian1](https://huggingface.co/RebeccaQian1)