PatrickHaller commited on
Commit
e872961
1 Parent(s): e04128b

Upload NGMEForCausalLM

Browse files
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/scratch/phmaker/ngme/tiny-stories/checkpoint-80000",
3
+ "architectures": [
4
+ "NGMEForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_ngme.NGMEConfig",
8
+ "AutoModelForCausalLM": "modeling_ngme.NGMEForCausalLM"
9
+ },
10
+ "bos_token_id": 1,
11
+ "eos_token_id": 0,
12
+ "ffn_dim": 512,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 1024,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 11008,
17
+ "max_position_embeddings": 2048,
18
+ "model_type": "ngme",
19
+ "num_attention_heads": 4,
20
+ "num_hidden_layers": 4,
21
+ "num_key_value_heads": 4,
22
+ "pad_token_id": 0,
23
+ "pretraining_tp": 1,
24
+ "rms_norm_eps": 1e-06,
25
+ "rope_scaling": null,
26
+ "tie_word_embeddings": false,
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.31.0",
29
+ "unk_idx": 1,
30
+ "unk_token_id": 1,
31
+ "use_cache": true,
32
+ "use_flash_attn": false,
33
+ "use_small_embedding": false,
34
+ "vocab_size": 36484
35
+ }
configuration_ngme.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+
21
+ from transformers.configuration_utils import PretrainedConfig
22
+ from transformers.utils import logging
23
+
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+
28
+ class NGMEConfig(PretrainedConfig):
29
+ r"""
30
+ This is the configuration class to store the configuration of a [`NGMEModel`]. It is used to instantiate an LLaMA
31
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
32
+ defaults will yield a similar configuration to that of the LLaMA-7B.
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 32000):
40
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
41
+ `inputs_ids` passed when calling [`NGMEModel`]
42
+ hidden_size (`int`, *optional*, defaults to 4096):
43
+ Dimension of the hidden representations.
44
+ intermediate_size (`int`, *optional*, defaults to 11008):
45
+ Dimension of the MLP representations.
46
+ num_hidden_layers (`int`, *optional*, defaults to 32):
47
+ Number of hidden layers in the Transformer encoder.
48
+ num_attention_heads (`int`, *optional*, defaults to 32):
49
+ Number of attention heads for each attention layer in the Transformer encoder.
50
+ num_key_value_heads (`int`, *optional*):
51
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
52
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
53
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
54
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
55
+ by meanpooling all the original heads within that group. For more details checkout [this
56
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
57
+ `num_attention_heads`.
58
+ pretraining_tp (`int`, *optional*, defaults to `1`):
59
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
60
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
61
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
62
+ issue](https://github.com/pytorch/pytorch/issues/76232).
63
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
64
+ The non-linear activation function (function or string) in the decoder.
65
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
66
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
67
+ just in case (e.g., 512 or 1024 or 2048).
68
+ initializer_range (`float`, *optional*, defaults to 0.02):
69
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
70
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
71
+ The epsilon used by the rms normalization layers.
72
+ use_cache (`bool`, *optional*, defaults to `True`):
73
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
74
+ relevant if `config.is_decoder=True`.
75
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
76
+ Whether to tie weight embeddings
77
+ rope_scaling (`Dict`, *optional*):
78
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
79
+ strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
80
+ is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
81
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
82
+ these scaling strategies behave:
83
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
84
+ experimental feature, subject to breaking API changes in future versions.
85
+
86
+ Example:
87
+
88
+ ```python
89
+ >>> from transformers import NGMEModel, LlamaConfig
90
+
91
+ >>> # Initializing a LLaMA llama-7b style configuration
92
+ >>> configuration = NGMEConfig()
93
+
94
+ >>> # Initializing a model from the llama-7b style configuration
95
+ >>> model = NGMEModel(configuration)
96
+
97
+ >>> # Accessing the model configuration
98
+ >>> configuration = model.config
99
+ ```"""
100
+ model_type = "ngme"
101
+ keys_to_ignore_at_inference = ["past_key_values"]
102
+
103
+ def __init__(
104
+ self,
105
+ vocab_size=32000,
106
+ hidden_size=4096,
107
+ intermediate_size=11008,
108
+ num_hidden_layers=32,
109
+ num_attention_heads=32,
110
+ num_key_value_heads=None,
111
+ hidden_act="silu",
112
+ max_position_embeddings=2048,
113
+ initializer_range=0.02,
114
+ rms_norm_eps=1e-6,
115
+ use_cache=True,
116
+ pad_token_id=None,
117
+ bos_token_id=1,
118
+ eos_token_id=2,
119
+ pretraining_tp=1,
120
+ tie_word_embeddings=False,
121
+ rope_scaling=None,
122
+ use_flash_attn=False,
123
+ use_small_embedding=False,
124
+ unk_idx=-1,
125
+ **kwargs,
126
+ ):
127
+ self.vocab_size = vocab_size
128
+ self.unk_idx = unk_idx
129
+ self.max_position_embeddings = max_position_embeddings
130
+ self.hidden_size = hidden_size
131
+ self.intermediate_size = intermediate_size
132
+ self.num_hidden_layers = num_hidden_layers
133
+ self.num_attention_heads = num_attention_heads
134
+
135
+ # for backward compatibility
136
+ if num_key_value_heads is None:
137
+ num_key_value_heads = num_attention_heads
138
+
139
+ self.num_key_value_heads = num_key_value_heads
140
+ self.hidden_act = hidden_act
141
+ self.initializer_range = initializer_range
142
+ self.rms_norm_eps = rms_norm_eps
143
+ self.pretraining_tp = pretraining_tp
144
+ self.use_cache = use_cache
145
+ self.rope_scaling = rope_scaling
146
+ self._rope_scaling_validation()
147
+ self.use_flash_attn = use_flash_attn
148
+ self.use_small_embedding = use_small_embedding
149
+
150
+ super().__init__(
151
+ pad_token_id=pad_token_id,
152
+ bos_token_id=bos_token_id,
153
+ eos_token_id=eos_token_id,
154
+ tie_word_embeddings=tie_word_embeddings,
155
+ **kwargs,
156
+ )
157
+
158
+ def _rope_scaling_validation(self):
159
+ """
160
+ Validate the `rope_scaling` configuration.
161
+ """
162
+ if self.rope_scaling is None:
163
+ return
164
+
165
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
166
+ raise ValueError(
167
+ "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
168
+ f"got {self.rope_scaling}"
169
+ )
170
+ rope_scaling_type = self.rope_scaling.get("type", None)
171
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
172
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
173
+ raise ValueError(
174
+ f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
175
+ )
176
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
177
+ raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 0,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.31.0"
7
+ }
modeling_ngme.py ADDED
@@ -0,0 +1,1114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch LLaMA model."""
21
+ import math
22
+ from typing import List, Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.nn.functional as F
26
+ import torch.utils.checkpoint
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+
30
+ from transformers.activations import ACT2FN
31
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
32
+ from transformers.modeling_utils import PreTrainedModel
33
+ from transformers.utils import logging
34
+ from transformers.generation.utils import SampleOutput
35
+ from transformers.generation.logits_process import LogitsProcessorList
36
+ from transformers.generation.stopping_criteria import StoppingCriteriaList
37
+
38
+ from .tokenization_ngme import NGMETokenizer
39
+ from .sampling import sample as sample_ngme
40
+
41
+ # Flash Attn imports
42
+ try:
43
+ from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func
44
+ from flash_attn.bert_padding import unpad_input, pad_input
45
+ except Exception:
46
+ pass
47
+
48
+ try:
49
+ from einops import rearrange
50
+ except Exception:
51
+ pass
52
+
53
+ from .configuration_ngme import NGMEConfig
54
+
55
+ from ngme import (
56
+ soft_n_hot,
57
+ NGramsEmbedding,
58
+ collect_n_gram_sequences,
59
+ shift_with_pad,
60
+ )
61
+
62
+ logger = logging.get_logger(__name__)
63
+
64
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
65
+ def _make_causal_mask(
66
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
67
+ ):
68
+ """
69
+ Make causal mask used for bi-directional self-attention.
70
+ """
71
+ bsz, tgt_len = input_ids_shape
72
+ mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
73
+ mask_cond = torch.arange(mask.size(-1), device=device)
74
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
75
+ mask = mask.to(dtype)
76
+
77
+ if past_key_values_length > 0:
78
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
79
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
80
+
81
+
82
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
83
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
84
+ """
85
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
86
+ """
87
+ bsz, src_len = mask.size()
88
+ tgt_len = tgt_len if tgt_len is not None else src_len
89
+
90
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
91
+
92
+ inverted_mask = 1.0 - expanded_mask
93
+
94
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
95
+
96
+
97
+ class NGMERMSNorm(nn.Module):
98
+ def __init__(self, hidden_size, eps=1e-6):
99
+ """
100
+ NGMERMSNorm is equivalent to T5LayerNorm
101
+ """
102
+ super().__init__()
103
+ self.weight = nn.Parameter(torch.ones(hidden_size))
104
+ self.variance_epsilon = eps
105
+
106
+ def forward(self, hidden_states):
107
+ input_dtype = hidden_states.dtype
108
+ hidden_states = hidden_states.to(torch.float32)
109
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
110
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
111
+ return self.weight * hidden_states.to(input_dtype)
112
+
113
+
114
+ class NGMERotaryEmbedding(torch.nn.Module):
115
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
116
+ super().__init__()
117
+
118
+ self.dim = dim
119
+ self.max_position_embeddings = max_position_embeddings
120
+ self.base = base
121
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
122
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
123
+
124
+ # Build here to make `torch.jit.trace` work.
125
+ self._set_cos_sin_cache(
126
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
127
+ )
128
+
129
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
130
+ self.max_seq_len_cached = seq_len
131
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
132
+
133
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
134
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
135
+ emb = torch.cat((freqs, freqs), dim=-1)
136
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
137
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
138
+
139
+ def forward(self, x, seq_len=None):
140
+ # x: [bs, num_attention_heads, seq_len, head_size]
141
+ if seq_len > self.max_seq_len_cached:
142
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
143
+
144
+ return (
145
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
146
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
147
+ )
148
+
149
+
150
+ class NGMELinearScalingRotaryEmbedding(NGMERotaryEmbedding):
151
+ """NGMERotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
152
+
153
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
154
+ self.scaling_factor = scaling_factor
155
+ super().__init__(dim, max_position_embeddings, base, device)
156
+
157
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
158
+ self.max_seq_len_cached = seq_len
159
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
160
+ t = t / self.scaling_factor
161
+
162
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
163
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
164
+ emb = torch.cat((freqs, freqs), dim=-1)
165
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
166
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
167
+
168
+
169
+ class NGMEDynamicNTKScalingRotaryEmbedding(NGMERotaryEmbedding):
170
+ """NGMERotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
171
+
172
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
173
+ self.scaling_factor = scaling_factor
174
+ super().__init__(dim, max_position_embeddings, base, device)
175
+
176
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
177
+ self.max_seq_len_cached = seq_len
178
+
179
+ if seq_len > self.max_position_embeddings:
180
+ base = self.base * (
181
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
182
+ ) ** (self.dim / (self.dim - 2))
183
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
184
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
185
+
186
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
187
+
188
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
189
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
190
+ emb = torch.cat((freqs, freqs), dim=-1)
191
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
192
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
193
+
194
+
195
+ def rotate_half(x):
196
+ """Rotates half the hidden dims of the input."""
197
+ x1 = x[..., : x.shape[-1] // 2]
198
+ x2 = x[..., x.shape[-1] // 2 :]
199
+ return torch.cat((-x2, x1), dim=-1)
200
+
201
+
202
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
203
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
204
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
205
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
206
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
207
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
208
+ q_embed = (q * cos) + (rotate_half(q) * sin)
209
+ k_embed = (k * cos) + (rotate_half(k) * sin)
210
+ return q_embed, k_embed
211
+
212
+
213
+ class NGMEMLP(nn.Module):
214
+ def __init__(self, config):
215
+ super().__init__()
216
+ self.config = config
217
+ self.hidden_size = config.hidden_size
218
+ self.intermediate_size = config.intermediate_size
219
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
220
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
221
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
222
+ self.act_fn = ACT2FN[config.hidden_act]
223
+
224
+ def forward(self, x):
225
+ if self.config.pretraining_tp > 1:
226
+ slice = self.intermediate_size // self.config.pretraining_tp
227
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
228
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
229
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
230
+
231
+ gate_proj = torch.cat(
232
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
233
+ )
234
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
235
+
236
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
237
+ down_proj = [
238
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
239
+ ]
240
+ down_proj = sum(down_proj)
241
+ else:
242
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
243
+
244
+ return down_proj
245
+
246
+
247
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
248
+ """
249
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
250
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
251
+ """
252
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
253
+ if n_rep == 1:
254
+ return hidden_states
255
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
256
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
257
+
258
+
259
+ class NGMEAttention(nn.Module):
260
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
261
+
262
+ def __init__(self, config: NGMEConfig):
263
+ super().__init__()
264
+ self.config = config
265
+ self.hidden_size = config.hidden_size
266
+ self.num_heads = config.num_attention_heads
267
+ self.head_dim = self.hidden_size // self.num_heads
268
+ self.num_key_value_heads = config.num_key_value_heads
269
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
270
+ self.max_position_embeddings = config.max_position_embeddings
271
+
272
+ if (self.head_dim * self.num_heads) != self.hidden_size:
273
+ raise ValueError(
274
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
275
+ f" and `num_heads`: {self.num_heads})."
276
+ )
277
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
278
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
279
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
280
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
281
+ self._init_rope()
282
+
283
+ def _init_rope(self):
284
+ if self.config.rope_scaling is None:
285
+ self.rotary_emb = NGMERotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
286
+ else:
287
+ scaling_type = self.config.rope_scaling["type"]
288
+ scaling_factor = self.config.rope_scaling["factor"]
289
+ if scaling_type == "linear":
290
+ self.rotary_emb = NGMELinearScalingRotaryEmbedding(
291
+ self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
292
+ )
293
+ elif scaling_type == "dynamic":
294
+ self.rotary_emb = NGMEDynamicNTKScalingRotaryEmbedding(
295
+ self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
296
+ )
297
+ else:
298
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
299
+
300
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
301
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
302
+
303
+ def forward(
304
+ self,
305
+ hidden_states: torch.Tensor,
306
+ attention_mask: Optional[torch.Tensor] = None,
307
+ position_ids: Optional[torch.LongTensor] = None,
308
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
309
+ output_attentions: bool = False,
310
+ use_cache: bool = False,
311
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
312
+
313
+ if self.config.use_flash_attn:
314
+ return self._flash_forward(
315
+ hidden_states,
316
+ attention_mask=attention_mask,
317
+ position_ids=position_ids,
318
+ past_key_value=past_key_value,
319
+ output_attentions=output_attentions,
320
+ use_cache=use_cache,
321
+ )
322
+
323
+ return self._forward(
324
+ hidden_states,
325
+ attention_mask=attention_mask,
326
+ position_ids=position_ids,
327
+ past_key_value=past_key_value,
328
+ output_attentions=output_attentions,
329
+ use_cache=use_cache,
330
+ )
331
+
332
+ def _forward(
333
+ self,
334
+ hidden_states: torch.Tensor,
335
+ attention_mask: Optional[torch.Tensor] = None,
336
+ position_ids: Optional[torch.LongTensor] = None,
337
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
338
+ output_attentions: bool = False,
339
+ use_cache: bool = False,
340
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
341
+
342
+ bsz, q_len, _ = hidden_states.size()
343
+
344
+ if self.config.pretraining_tp > 1:
345
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
346
+ query_slices = self.q_proj.weight.split(
347
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
348
+ )
349
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
350
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
351
+
352
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
353
+ query_states = torch.cat(query_states, dim=-1)
354
+
355
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
356
+ key_states = torch.cat(key_states, dim=-1)
357
+
358
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
359
+ value_states = torch.cat(value_states, dim=-1)
360
+
361
+ else:
362
+ query_states = self.q_proj(hidden_states)
363
+ key_states = self.k_proj(hidden_states)
364
+ value_states = self.v_proj(hidden_states)
365
+
366
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
367
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
368
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
369
+
370
+ kv_seq_len = key_states.shape[-2]
371
+ if past_key_value is not None:
372
+ kv_seq_len += past_key_value[0].shape[-2]
373
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
374
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
375
+
376
+ if past_key_value is not None:
377
+ # reuse k, v, self_attention
378
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
379
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
380
+
381
+ past_key_value = (key_states, value_states) if use_cache else None
382
+
383
+ # repeat k/v heads if n_kv_heads < n_heads
384
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
385
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
386
+
387
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
388
+
389
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
390
+ raise ValueError(
391
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
392
+ f" {attn_weights.size()}"
393
+ )
394
+
395
+ if attention_mask is not None:
396
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
397
+ raise ValueError(
398
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
399
+ )
400
+ attn_weights = attn_weights + attention_mask
401
+
402
+ # upcast attention to fp32
403
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
404
+ attn_output = torch.matmul(attn_weights, value_states)
405
+
406
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
407
+ raise ValueError(
408
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
409
+ f" {attn_output.size()}"
410
+ )
411
+
412
+ attn_output = attn_output.transpose(1, 2).contiguous()
413
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
414
+
415
+ if self.config.pretraining_tp > 1:
416
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
417
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
418
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
419
+ else:
420
+ attn_output = self.o_proj(attn_output)
421
+
422
+ if not output_attentions:
423
+ attn_weights = None
424
+
425
+ return attn_output, attn_weights, past_key_value
426
+
427
+
428
+ def _flash_forward(
429
+ self,
430
+ hidden_states: torch.Tensor,
431
+ attention_mask: Optional[torch.Tensor] = None,
432
+ position_ids: Optional[torch.Tensor] = None,
433
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
434
+ output_attentions: bool = False,
435
+ use_cache: bool = False,
436
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
437
+ """Input shape: Batch x Time x Channel
438
+
439
+ attention_mask: [bsz, q_len]
440
+ """
441
+ if output_attentions:
442
+ warnings.warn("Output attentions is not supported for patched `LlamaAttention`, returning `None` instead.")
443
+
444
+ bsz, q_len, _ = hidden_states.size()
445
+
446
+ query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
447
+ key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
448
+ value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
449
+ # [bsz, q_len, nh, hd]
450
+ # [bsz, nh, q_len, hd]
451
+
452
+ kv_seq_len = key_states.shape[-2]
453
+ if past_key_value is not None:
454
+ kv_seq_len += past_key_value[0].shape[-2]
455
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
456
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
457
+
458
+ # Past Key value support
459
+ if past_key_value is not None:
460
+ # reuse k, v, self_attention
461
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
462
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
463
+
464
+ past_key_value = (key_states, value_states) if use_cache else None
465
+
466
+ # PEFT Int4 support
467
+ query_states, key_states, value_states = [x.to(torch.bfloat16) for x in [query_states, key_states, value_states]]
468
+
469
+ assert all(
470
+ (i.dtype in [torch.float16, torch.bfloat16] for i in (query_states, key_states, value_states))
471
+ ), "shit not all types"
472
+
473
+ # Flash attention codes from
474
+ # https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/flash_attention.py
475
+
476
+ # transform the data into the format required by flash attention
477
+ qkv = torch.stack([query_states, key_states, value_states], dim=2) # [bsz, nh, 3, q_len, hd]
478
+ qkv = qkv.transpose(1, 3) # [bsz, q_len, 3, nh, hd]
479
+ # We have disabled _prepare_decoder_attention_mask in LlamaModel
480
+ # the attention_mask should be the same as the key_padding_mask
481
+ key_padding_mask = attention_mask
482
+
483
+ if key_padding_mask is None:
484
+ qkv = rearrange(qkv, "b s ... -> (b s) ...")
485
+ max_s = q_len
486
+ cu_q_lens = torch.arange(0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32, device=qkv.device)
487
+ output = flash_attn_varlen_qkvpacked_func(qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True)
488
+ output = rearrange(output, "(b s) ... -> b s ...", b=bsz)
489
+ else:
490
+ nheads = qkv.shape[-2]
491
+ x = rearrange(qkv, "b s three h d -> b s (three h d)")
492
+ x_unpad, indices, cu_q_lens, max_s = unpad_input(x, key_padding_mask)
493
+ x_unpad = rearrange(x_unpad, "nnz (three h d) -> nnz three h d", three=3, h=nheads)
494
+ output_unpad = flash_attn_varlen_qkvpacked_func(
495
+ x_unpad, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
496
+ )
497
+ output = rearrange(
498
+ pad_input(rearrange(output_unpad, "nnz h d -> nnz (h d)"), indices, bsz, q_len),
499
+ "b s (h d) -> b s h d",
500
+ h=nheads,
501
+ )
502
+ return self.o_proj(rearrange(output, "b s h d -> b s (h d)")), None, past_key_value
503
+
504
+
505
+ class NGMEDecoderLayer(nn.Module):
506
+ def __init__(self, config: NGMEConfig):
507
+ super().__init__()
508
+ self.hidden_size = config.hidden_size
509
+ self.self_attn = NGMEAttention(config=config)
510
+ self.mlp = NGMEMLP(config)
511
+ self.input_layernorm = NGMERMSNorm(config.hidden_size, eps=config.rms_norm_eps)
512
+ self.post_attention_layernorm = NGMERMSNorm(config.hidden_size, eps=config.rms_norm_eps)
513
+
514
+ def forward(
515
+ self,
516
+ hidden_states: torch.Tensor,
517
+ attention_mask: Optional[torch.Tensor] = None,
518
+ position_ids: Optional[torch.LongTensor] = None,
519
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
520
+ output_attentions: Optional[bool] = False,
521
+ use_cache: Optional[bool] = False,
522
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
523
+ """
524
+ Args:
525
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
526
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
527
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
528
+ output_attentions (`bool`, *optional*):
529
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
530
+ returned tensors for more detail.
531
+ use_cache (`bool`, *optional*):
532
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
533
+ (see `past_key_values`).
534
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
535
+ """
536
+
537
+ residual = hidden_states
538
+
539
+ hidden_states = self.input_layernorm(hidden_states)
540
+
541
+ # Self Attention
542
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
543
+ hidden_states=hidden_states,
544
+ attention_mask=attention_mask,
545
+ position_ids=position_ids,
546
+ past_key_value=past_key_value,
547
+ output_attentions=output_attentions,
548
+ use_cache=use_cache,
549
+ )
550
+ hidden_states = residual + hidden_states
551
+
552
+ # Fully Connected
553
+ residual = hidden_states
554
+ hidden_states = self.post_attention_layernorm(hidden_states)
555
+ hidden_states = self.mlp(hidden_states)
556
+ hidden_states = residual + hidden_states
557
+
558
+ outputs = (hidden_states,)
559
+
560
+ if output_attentions:
561
+ outputs += (self_attn_weights,)
562
+
563
+ if use_cache:
564
+ outputs += (present_key_value,)
565
+
566
+ return outputs
567
+
568
+
569
+ class NGMEPreTrainedModel(PreTrainedModel):
570
+ config_class = NGMEConfig
571
+ base_model_prefix = "model"
572
+ supports_gradient_checkpointing = True
573
+ _no_split_modules = ["NGMEDecoderLayer"]
574
+ _skip_keys_device_placement = "past_key_values"
575
+
576
+ def _init_weights(self, module):
577
+ std = self.config.initializer_range
578
+ if isinstance(module, nn.Linear):
579
+ module.weight.data.normal_(mean=0.0, std=std)
580
+ if module.bias is not None:
581
+ module.bias.data.zero_()
582
+ elif isinstance(module, NGramsEmbedding):
583
+ if self.config.use_small_embedding:
584
+ nn.init.uniform_(module.weight, a=-1e-4, b=1e-4)
585
+ else:
586
+ module.weight.data.normal_(mean=0.0, std=std)
587
+ if module.padding_idx is not None:
588
+ module.weight.data[module.padding_idx].zero_()
589
+
590
+ def _set_gradient_checkpointing(self, module, value=False):
591
+ if isinstance(module, NGMEModel):
592
+ module.gradient_checkpointing = value
593
+
594
+
595
+ class NGMEModel(NGMEPreTrainedModel):
596
+ """
597
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`NGMEDecoderLayer`]
598
+
599
+ Args:
600
+ config: NGMEConfig
601
+ """
602
+
603
+ def __init__(self, config: NGMEConfig):
604
+ super().__init__(config)
605
+ self.padding_idx = config.pad_token_id
606
+ self.vocab_size = config.vocab_size
607
+
608
+ self.embed_tokens = NGramsEmbedding(config.vocab_size, config.hidden_size, self.padding_idx, unk_idx=config.unk_idx)
609
+
610
+ if self.config.use_small_embedding:
611
+ self.embed_layer_norm = nn.LayerNorm(config.hidden_size)
612
+
613
+ self.layers = nn.ModuleList([NGMEDecoderLayer(config) for _ in range(config.num_hidden_layers)])
614
+ self.norm = NGMERMSNorm(config.hidden_size, eps=config.rms_norm_eps)
615
+
616
+ self.gradient_checkpointing = False
617
+ # Initialize weights and apply final processing
618
+ self.post_init()
619
+
620
+ def get_input_embeddings(self):
621
+ return self.embed_tokens
622
+
623
+ def set_input_embeddings(self, value):
624
+ self.embed_tokens = value
625
+
626
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
627
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
628
+
629
+ if self.config.use_flash_attn:
630
+ return attention_mask
631
+
632
+ # create causal mask
633
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
634
+ combined_attention_mask = None
635
+ if input_shape[-1] > 1:
636
+ combined_attention_mask = _make_causal_mask(
637
+ input_shape,
638
+ inputs_embeds.dtype,
639
+ device=inputs_embeds.device,
640
+ past_key_values_length=past_key_values_length,
641
+ )
642
+
643
+ if attention_mask is not None:
644
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
645
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
646
+ inputs_embeds.device
647
+ )
648
+ combined_attention_mask = (
649
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
650
+ )
651
+
652
+ return combined_attention_mask
653
+
654
+ def forward(
655
+ self,
656
+ input_ids: torch.LongTensor = None,
657
+ attention_mask: Optional[torch.Tensor] = None,
658
+ position_ids: Optional[torch.LongTensor] = None,
659
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
660
+ inputs_embeds: Optional[torch.FloatTensor] = None,
661
+ use_cache: Optional[bool] = None,
662
+ output_attentions: Optional[bool] = None,
663
+ output_hidden_states: Optional[bool] = None,
664
+ return_dict: Optional[bool] = None,
665
+ ngram_sequences: List[torch.Tensor] = []
666
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
667
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
668
+ output_hidden_states = (
669
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
670
+ )
671
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
672
+
673
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
674
+
675
+ # retrieve input_ids and inputs_embeds
676
+ if input_ids is not None and inputs_embeds is not None:
677
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
678
+ elif input_ids is not None:
679
+ batch_size, seq_length = input_ids.shape
680
+ elif inputs_embeds is not None:
681
+ batch_size, seq_length, _ = inputs_embeds.shape
682
+ else:
683
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
684
+
685
+ seq_length_with_past = seq_length
686
+ past_key_values_length = 0
687
+
688
+ if past_key_values is not None:
689
+ past_key_values_length = past_key_values[0][0].shape[2]
690
+ seq_length_with_past = seq_length_with_past + past_key_values_length
691
+
692
+ if position_ids is None:
693
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
694
+ position_ids = torch.arange(
695
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
696
+ )
697
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
698
+ else:
699
+ position_ids = position_ids.view(-1, seq_length).long()
700
+
701
+ if inputs_embeds is None:
702
+ inputs_embeds = self.embed_tokens(input_ids, ngram_sequences)
703
+
704
+ if self.config.use_small_embedding:
705
+ inputs_embeds = self.embed_layer_norm(inputs_embeds)
706
+
707
+ # embed positions
708
+ if attention_mask is None:
709
+ attention_mask = torch.ones(
710
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
711
+ )
712
+ attention_mask = self._prepare_decoder_attention_mask(
713
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
714
+ )
715
+
716
+ hidden_states = inputs_embeds
717
+
718
+ if self.gradient_checkpointing and self.training:
719
+ if use_cache:
720
+ logger.warning_once(
721
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
722
+ )
723
+ use_cache = False
724
+
725
+ # decoder layers
726
+ all_hidden_states = () if output_hidden_states else None
727
+ all_self_attns = () if output_attentions else None
728
+ next_decoder_cache = () if use_cache else None
729
+
730
+ for idx, decoder_layer in enumerate(self.layers):
731
+ if output_hidden_states:
732
+ all_hidden_states += (hidden_states,)
733
+
734
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
735
+
736
+ if self.gradient_checkpointing and self.training:
737
+
738
+ def create_custom_forward(module):
739
+ def custom_forward(*inputs):
740
+ # None for past_key_value
741
+ return module(*inputs, output_attentions, None)
742
+
743
+ return custom_forward
744
+
745
+ layer_outputs = torch.utils.checkpoint.checkpoint(
746
+ create_custom_forward(decoder_layer),
747
+ hidden_states,
748
+ attention_mask,
749
+ position_ids,
750
+ None,
751
+ )
752
+ else:
753
+ layer_outputs = decoder_layer(
754
+ hidden_states,
755
+ attention_mask=attention_mask,
756
+ position_ids=position_ids,
757
+ past_key_value=past_key_value,
758
+ output_attentions=output_attentions,
759
+ use_cache=use_cache,
760
+ )
761
+
762
+ hidden_states = layer_outputs[0]
763
+
764
+ if use_cache:
765
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
766
+
767
+ if output_attentions:
768
+ all_self_attns += (layer_outputs[1],)
769
+
770
+ hidden_states = self.norm(hidden_states)
771
+
772
+ # add hidden states from the last decoder layer
773
+ if output_hidden_states:
774
+ all_hidden_states += (hidden_states,)
775
+
776
+ next_cache = next_decoder_cache if use_cache else None
777
+ if not return_dict:
778
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
779
+ return BaseModelOutputWithPast(
780
+ last_hidden_state=hidden_states,
781
+ past_key_values=next_cache,
782
+ hidden_states=all_hidden_states,
783
+ attentions=all_self_attns,
784
+ )
785
+
786
+
787
+ class NGMEForCausalLM(NGMEPreTrainedModel):
788
+ _tied_weights_keys = ["lm_head.weight"]
789
+
790
+ def __init__(self, config):
791
+ super().__init__(config)
792
+ self.model = NGMEModel(config)
793
+ self.vocab_size = config.vocab_size
794
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
795
+
796
+ self.tokenizer: Optional[NGMETokenizer] = None
797
+ weight = torch.ones(config.vocab_size)
798
+ weight[config.unk_idx] = 0
799
+ self.loss_fct = CrossEntropyLoss(weight=weight)
800
+
801
+ # Initialize weights and apply final processing
802
+ self.post_init()
803
+
804
+ def get_input_embeddings(self):
805
+ return self.model.embed_tokens
806
+
807
+ def set_input_embeddings(self, value):
808
+ self.model.embed_tokens = value
809
+
810
+ def get_output_embeddings(self):
811
+ return self.lm_head
812
+
813
+ def set_output_embeddings(self, new_embeddings):
814
+ self.lm_head = new_embeddings
815
+
816
+ def set_decoder(self, decoder):
817
+ self.model = decoder
818
+
819
+ def get_decoder(self):
820
+ return self.model
821
+
822
+ def _collect_ngram_labels(self,
823
+ unigram_labels: torch.LongTensor,
824
+ label_gram_2_sequence: Optional[torch.LongTensor] = None,
825
+ label_gram_3_sequence: Optional[torch.LongTensor] = None,
826
+ label_gram_4_sequence: Optional[torch.LongTensor] = None,
827
+ label_target_gram_2_sequence: Optional[torch.LongTensor] = None,
828
+ label_target_gram_3_sequence: Optional[torch.LongTensor] = None,
829
+ label_target_gram_4_sequence: Optional[torch.LongTensor] = None
830
+ ):
831
+
832
+ ngram_labels = [unigram_labels[..., 1:].contiguous()]
833
+
834
+ if label_gram_2_sequence is not None:
835
+ if label_target_gram_2_sequence is not None:
836
+ two_gram_labels = label_target_gram_2_sequence[..., 1:].contiguous()
837
+ else:
838
+ two_gram_labels = shift_with_pad(label_gram_2_sequence, 2, unigram_labels)
839
+ ngram_labels.append(two_gram_labels)
840
+
841
+ if label_gram_3_sequence is not None:
842
+ if label_target_gram_3_sequence is not None:
843
+ three_gram_labels = label_target_gram_3_sequence[..., 1:].contiguous()
844
+ else:
845
+ three_gram_labels = shift_with_pad(label_gram_3_sequence, 3, unigram_labels)
846
+ ngram_labels.append(three_gram_labels)
847
+
848
+ if label_gram_4_sequence is not None:
849
+ if label_target_gram_4_sequence is not None:
850
+ four_gram_labels = label_target_gram_4_sequence[..., 1:].contiguous()
851
+ else:
852
+ four_gram_labels = shift_with_pad(label_gram_4_sequence, 4, unigram_labels)
853
+ ngram_labels.append(four_gram_labels)
854
+
855
+ return ngram_labels
856
+
857
+
858
+ def forward(
859
+ self,
860
+ input_ids: torch.LongTensor = None,
861
+ attention_mask: Optional[torch.Tensor] = None,
862
+ position_ids: Optional[torch.LongTensor] = None,
863
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
864
+ inputs_embeds: Optional[torch.FloatTensor] = None,
865
+ labels: Optional[torch.LongTensor] = None,
866
+ use_cache: Optional[bool] = None,
867
+ output_attentions: Optional[bool] = None,
868
+ output_hidden_states: Optional[bool] = None,
869
+ return_dict: Optional[bool] = None,
870
+ label_gram_2_sequence: Optional[torch.LongTensor] = None,
871
+ label_gram_3_sequence: Optional[torch.LongTensor] = None,
872
+ label_gram_4_sequence: Optional[torch.LongTensor] = None,
873
+ label_target_gram_2_sequence: Optional[torch.LongTensor] = None,
874
+ label_target_gram_3_sequence: Optional[torch.LongTensor] = None,
875
+ label_target_gram_4_sequence: Optional[torch.LongTensor] = None,
876
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
877
+
878
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
879
+ output_hidden_states = (
880
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
881
+ )
882
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
883
+
884
+ ngram_sequences = collect_n_gram_sequences(
885
+ gram_2_sequence=label_gram_2_sequence,
886
+ gram_3_sequence=label_gram_3_sequence,
887
+ gram_4_sequence=label_gram_4_sequence,
888
+ )
889
+
890
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
891
+ outputs = self.model(
892
+ input_ids=input_ids,
893
+ attention_mask=attention_mask,
894
+ position_ids=position_ids,
895
+ past_key_values=past_key_values,
896
+ inputs_embeds=inputs_embeds,
897
+ use_cache=use_cache,
898
+ output_attentions=output_attentions,
899
+ output_hidden_states=output_hidden_states,
900
+ return_dict=return_dict,
901
+ ngram_sequences=ngram_sequences
902
+ )
903
+
904
+ hidden_states = outputs[0]
905
+ if self.config.pretraining_tp > 1:
906
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
907
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
908
+ logits = torch.cat(logits, dim=-1)
909
+ else:
910
+ logits = self.lm_head(hidden_states)
911
+
912
+ logits = logits.float()
913
+
914
+ loss = None
915
+ if labels is not None:
916
+ # Shift so that tokens < n predict n
917
+ shift_logits = logits[..., :-1, :].contiguous()
918
+
919
+ ngram_labels = self._collect_ngram_labels(
920
+ unigram_labels=labels,
921
+ label_gram_2_sequence=label_gram_2_sequence,
922
+ label_gram_3_sequence=label_gram_3_sequence,
923
+ label_gram_4_sequence=label_gram_4_sequence,
924
+ label_target_gram_2_sequence=label_target_gram_2_sequence,
925
+ label_target_gram_3_sequence=label_target_gram_3_sequence,
926
+ label_target_gram_4_sequence=label_target_gram_4_sequence,
927
+ )
928
+
929
+ shift_labels = torch.stack(ngram_labels, dim=0)
930
+ shift_labels = soft_n_hot(shift_labels, self.config.vocab_size, strategy="exp")
931
+
932
+ # Flatten the tokens
933
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
934
+ shift_labels = shift_labels.view(-1, shift_labels.size(-1))
935
+ # Enable model parallelism
936
+ shift_labels = shift_labels.to(shift_logits.device)
937
+ loss = self.loss_fct(shift_logits, shift_labels)
938
+
939
+ if not return_dict:
940
+ output = (logits,) + outputs[1:]
941
+ return (loss,) + output if loss is not None else output
942
+
943
+ return CausalLMOutputWithPast(
944
+ loss=loss,
945
+ logits=logits,
946
+ past_key_values=outputs.past_key_values,
947
+ hidden_states=outputs.hidden_states,
948
+ attentions=outputs.attentions,
949
+ )
950
+
951
+ def prepare_inputs_for_generation(
952
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
953
+ ):
954
+ if past_key_values:
955
+ input_ids = input_ids[:, -1:]
956
+
957
+ position_ids = kwargs.get("position_ids", None)
958
+ if attention_mask is not None and position_ids is None:
959
+ # create position_ids on the fly for batch generation
960
+ position_ids = attention_mask.long().cumsum(-1) - 1
961
+ position_ids.masked_fill_(attention_mask == 0, 1)
962
+ if past_key_values:
963
+ position_ids = position_ids[:, -1].unsqueeze(-1)
964
+
965
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
966
+ if inputs_embeds is not None and past_key_values is None:
967
+ model_inputs = {"inputs_embeds": inputs_embeds}
968
+ else:
969
+ model_inputs = {"input_ids": input_ids}
970
+
971
+ model_inputs.update(
972
+ {
973
+ "position_ids": position_ids,
974
+ "past_key_values": past_key_values,
975
+ "use_cache": kwargs.get("use_cache"),
976
+ "attention_mask": attention_mask,
977
+ }
978
+ )
979
+ return model_inputs
980
+
981
+ @staticmethod
982
+ def _reorder_cache(past_key_values, beam_idx):
983
+ reordered_past = ()
984
+ for layer_past in past_key_values:
985
+ reordered_past += (
986
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
987
+ )
988
+ return reordered_past
989
+
990
+ def sample(self, input_ids: torch.LongTensor, logits_processor: Optional[LogitsProcessorList] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, logits_warper: Optional[LogitsProcessorList] = None, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, eos_token_id: Optional[Union[int, List[int]]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_scores: Optional[bool] = None, return_dict_in_generate: Optional[bool] = None, synced_gpus: bool = False, streamer = None, **model_kwargs) -> Union[SampleOutput, torch.LongTensor]:
991
+ if not hasattr(self, "tokenizer"):
992
+ raise ValueError(
993
+ "You are trying to sample from a model that does not have a tokenizer."
994
+ "Add a tokenizer as an attribute of your model (either manually or automatically)."
995
+ )
996
+
997
+ return sample_ngme(self, input_ids, logits_processor=logits_processor, stopping_criteria=stopping_criteria, logits_warper=logits_warper, max_length=max_length, pad_token_id=pad_token_id, eos_token_id=eos_token_id, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_scores=output_scores, return_dict_in_generate=return_dict_in_generate, synced_gpus=synced_gpus, streamer=streamer, **model_kwargs)
998
+
999
+
1000
+ class NGMEForSequenceClassification(NGMEPreTrainedModel):
1001
+ def __init__(self, config):
1002
+ super().__init__(config)
1003
+ self.num_labels = config.num_labels
1004
+ self.model = NGMEModel(config)
1005
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1006
+
1007
+ # Initialize weights and apply final processing
1008
+ self.post_init()
1009
+
1010
+ def get_input_embeddings(self):
1011
+ return self.model.embed_tokens
1012
+
1013
+ def set_input_embeddings(self, value):
1014
+ self.model.embed_tokens = value
1015
+
1016
+ def forward(
1017
+ self,
1018
+ input_ids: torch.LongTensor = None,
1019
+ attention_mask: Optional[torch.Tensor] = None,
1020
+ position_ids: Optional[torch.LongTensor] = None,
1021
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1022
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1023
+ labels: Optional[torch.LongTensor] = None,
1024
+ use_cache: Optional[bool] = None,
1025
+ output_attentions: Optional[bool] = None,
1026
+ output_hidden_states: Optional[bool] = None,
1027
+ return_dict: Optional[bool] = None,
1028
+ label_gram_2_sequence: Optional[torch.LongTensor] = None,
1029
+ label_gram_3_sequence: Optional[torch.LongTensor] = None,
1030
+ label_gram_4_sequence: Optional[torch.LongTensor] = None,
1031
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1032
+ r"""
1033
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1034
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1035
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1036
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1037
+ """
1038
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1039
+
1040
+ ngram_sequences = collect_n_gram_sequences(
1041
+ gram_2_sequence=label_gram_2_sequence,
1042
+ gram_3_sequence=label_gram_3_sequence,
1043
+ gram_4_sequence=label_gram_4_sequence,
1044
+ )
1045
+
1046
+ transformer_outputs = self.model(
1047
+ input_ids,
1048
+ attention_mask=attention_mask,
1049
+ position_ids=position_ids,
1050
+ past_key_values=past_key_values,
1051
+ inputs_embeds=inputs_embeds,
1052
+ use_cache=use_cache,
1053
+ output_attentions=output_attentions,
1054
+ output_hidden_states=output_hidden_states,
1055
+ return_dict=return_dict,
1056
+ ngram_sequences=ngram_sequences
1057
+ )
1058
+ hidden_states = transformer_outputs[0]
1059
+ logits = self.score(hidden_states)
1060
+
1061
+ if input_ids is not None:
1062
+ batch_size = input_ids.shape[0]
1063
+ else:
1064
+ batch_size = inputs_embeds.shape[0]
1065
+
1066
+ if self.config.pad_token_id is None and batch_size != 1:
1067
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1068
+ if self.config.pad_token_id is None:
1069
+ sequence_lengths = -1
1070
+ else:
1071
+ if input_ids is not None:
1072
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to(
1073
+ logits.device
1074
+ )
1075
+ else:
1076
+ sequence_lengths = -1
1077
+
1078
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1079
+
1080
+ loss = None
1081
+
1082
+ if labels is not None:
1083
+ labels = labels.to(logits.device)
1084
+ if self.config.problem_type is None:
1085
+ if self.num_labels == 1:
1086
+ self.config.problem_type = "regression"
1087
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1088
+ self.config.problem_type = "single_label_classification"
1089
+ else:
1090
+ self.config.problem_type = "multi_label_classification"
1091
+
1092
+ if self.config.problem_type == "regression":
1093
+ loss_fct = MSELoss()
1094
+ if self.num_labels == 1:
1095
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1096
+ else:
1097
+ loss = loss_fct(pooled_logits, labels)
1098
+ elif self.config.problem_type == "single_label_classification":
1099
+ loss_fct = CrossEntropyLoss()
1100
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1101
+ elif self.config.problem_type == "multi_label_classification":
1102
+ loss_fct = BCEWithLogitsLoss()
1103
+ loss = loss_fct(pooled_logits, labels)
1104
+ if not return_dict:
1105
+ output = (pooled_logits,) + transformer_outputs[1:]
1106
+ return ((loss,) + output) if loss is not None else output
1107
+
1108
+ return SequenceClassifierOutputWithPast(
1109
+ loss=loss,
1110
+ logits=pooled_logits,
1111
+ past_key_values=transformer_outputs.past_key_values,
1112
+ hidden_states=transformer_outputs.hidden_states,
1113
+ attentions=transformer_outputs.attentions,
1114
+ )
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed7ad7139c105552780804f22420162ed698f8db3b29854dfaf0979b3fcdab51
3
+ size 907246313
sampling.py ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import warnings
2
+ from typing import List, Optional, Union
3
+
4
+ import torch
5
+ import torch.distributed as dist
6
+ from torch import nn
7
+ from transformers import BatchEncoding
8
+ from transformers.generation.logits_process import (
9
+ LogitsProcessorList,
10
+ )
11
+ from transformers.generation.stopping_criteria import (
12
+ StoppingCriteriaList,
13
+ validate_stopping_criteria,
14
+ )
15
+
16
+ from transformers.generation.utils import SampleOutput, SampleEncoderDecoderOutput, SampleDecoderOnlyOutput
17
+
18
+ def sample(
19
+ self,
20
+ input_ids: torch.LongTensor,
21
+ logits_processor: Optional[LogitsProcessorList] = None,
22
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
23
+ logits_warper: Optional[LogitsProcessorList] = None,
24
+ max_length: Optional[int] = None,
25
+ pad_token_id: Optional[int] = None,
26
+ eos_token_id: Optional[Union[int, List[int]]] = None,
27
+ output_attentions: Optional[bool] = None,
28
+ output_hidden_states: Optional[bool] = None,
29
+ output_scores: Optional[bool] = None,
30
+ return_dict_in_generate: Optional[bool] = None,
31
+ synced_gpus: Optional[bool] = False,
32
+ **model_kwargs,
33
+ ) -> Union[SampleOutput, torch.LongTensor]:
34
+
35
+ if type(input_ids) in [dict, BatchEncoding]:
36
+ input_ids, ngram_sequences = input_ids["input_ids"], input_ids
37
+ del ngram_sequences["input_ids"]
38
+ del ngram_sequences["attention_mask"]
39
+ else:
40
+ ngram_sequences = {}
41
+
42
+ # init values
43
+ logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
44
+ stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
45
+ if max_length is not None:
46
+ warnings.warn(
47
+ "`max_length` is deprecated in this function, use"
48
+ " `stopping_criteria=StoppingCriteriaList(MaxLengthCriteria(max_length=max_length))` instead.",
49
+ UserWarning,
50
+ )
51
+ stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
52
+ logits_warper = logits_warper if logits_warper is not None else LogitsProcessorList()
53
+ pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
54
+ eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
55
+ if isinstance(eos_token_id, int):
56
+ eos_token_id = [eos_token_id]
57
+
58
+ eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
59
+ output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
60
+ output_attentions = (
61
+ output_attentions if output_attentions is not None else self.generation_config.output_attentions
62
+ )
63
+ output_hidden_states = (
64
+ output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
65
+ )
66
+ return_dict_in_generate = (
67
+ return_dict_in_generate
68
+ if return_dict_in_generate is not None
69
+ else self.generation_config.return_dict_in_generate
70
+ )
71
+
72
+ # init attention / hidden states / scores tuples
73
+ scores = () if (return_dict_in_generate and output_scores) else None
74
+ decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
75
+ cross_attentions = () if (return_dict_in_generate and output_attentions) else None
76
+ decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
77
+
78
+ # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
79
+ if return_dict_in_generate and self.config.is_encoder_decoder:
80
+ encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
81
+ encoder_hidden_states = (
82
+ model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
83
+ )
84
+
85
+ # keep track of which sequences are already finished
86
+ unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
87
+
88
+ this_peer_finished = False # used by synced_gpus only
89
+ # auto-regressive generation
90
+ while True:
91
+ if synced_gpus:
92
+ # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
93
+ # The following logic allows an early break if all peers finished generating their sequence
94
+ this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
95
+ # send 0.0 if we finished, 1.0 otherwise
96
+ dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
97
+ # did all peers finish? the reduced sum will be 0.0 then
98
+ if this_peer_finished_flag.item() == 0.0:
99
+ break
100
+
101
+ # prepare model inputs
102
+ model_inputs = {"input_ids": input_ids}
103
+
104
+ # forward pass to get next token
105
+ outputs = self(
106
+ **model_inputs,
107
+ return_dict=True,
108
+ output_attentions=output_attentions,
109
+ output_hidden_states=output_hidden_states,
110
+ **ngram_sequences
111
+ )
112
+
113
+ if synced_gpus and this_peer_finished:
114
+ continue # don't waste resources running the code we don't need
115
+
116
+ next_token_logits = outputs.logits[:, -1, :]
117
+
118
+ # pre-process distribution
119
+ next_token_scores = logits_processor(input_ids, next_token_logits)
120
+ next_token_scores = logits_warper(input_ids, next_token_scores)
121
+
122
+ # Store scores, attentions and hidden_states when required
123
+ if return_dict_in_generate:
124
+ if output_scores:
125
+ scores += (next_token_scores,)
126
+ if output_attentions:
127
+ decoder_attentions += (
128
+ (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
129
+ )
130
+ if self.config.is_encoder_decoder:
131
+ cross_attentions += (outputs.cross_attentions,)
132
+
133
+ if output_hidden_states:
134
+ decoder_hidden_states += (
135
+ (outputs.decoder_hidden_states,)
136
+ if self.config.is_encoder_decoder
137
+ else (outputs.hidden_states,)
138
+ )
139
+
140
+ # sample
141
+ probs = nn.functional.softmax(next_token_scores, dim=-1)
142
+ next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
143
+
144
+ # finished sentences should have their next token be a padding token
145
+ if eos_token_id is not None:
146
+ if pad_token_id is None:
147
+ raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
148
+ next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
149
+
150
+ # update generated ids, model inputs, and length for next step
151
+ input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
152
+ decoded = self.tokenizer.batch_decode(input_ids)[0]
153
+ encoded = self.tokenizer(
154
+ decoded, return_tensors="pt", return_ngram_sequences=True
155
+ )
156
+ input_ids = encoded.input_ids.to(self.device)
157
+
158
+ ngram_sequences = {}
159
+
160
+ if "label_gram_2_sequence" in encoded:
161
+ ngram_sequences["label_gram_2_sequence"] = encoded["label_gram_2_sequence"].to(self.device)
162
+
163
+ if "label_gram_3_sequence" in encoded:
164
+ ngram_sequences["label_gram_3_sequence"] = encoded["label_gram_3_sequence"].to(self.device)
165
+
166
+ if "label_gram_4_sequence" in encoded:
167
+ ngram_sequences["label_gram_4_sequence"] = encoded["label_gram_4_sequence"].to(self.device)
168
+
169
+ model_kwargs = self._update_model_kwargs_for_generation(
170
+ outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
171
+ )
172
+
173
+ # if eos_token was found in one sentence, set sentence to finished
174
+ if eos_token_id_tensor is not None:
175
+ unfinished_sequences = unfinished_sequences.mul(
176
+ next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
177
+ )
178
+
179
+ # stop when each sentence is finished, or if we exceed the maximum length
180
+ if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
181
+ if not synced_gpus:
182
+ break
183
+ else:
184
+ this_peer_finished = True
185
+
186
+ if return_dict_in_generate:
187
+ if self.config.is_encoder_decoder:
188
+ return SampleEncoderDecoderOutput(
189
+ sequences=input_ids,
190
+ scores=scores,
191
+ encoder_attentions=encoder_attentions,
192
+ encoder_hidden_states=encoder_hidden_states,
193
+ decoder_attentions=decoder_attentions,
194
+ cross_attentions=cross_attentions,
195
+ decoder_hidden_states=decoder_hidden_states,
196
+ )
197
+ else:
198
+ return SampleDecoderOnlyOutput(
199
+ sequences=input_ids,
200
+ scores=scores,
201
+ attentions=decoder_attentions,
202
+ hidden_states=decoder_hidden_states,
203
+ )
204
+ else:
205
+ return input_ids
tokenization_ngme.py ADDED
@@ -0,0 +1,1250 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import unittest
3
+ import os
4
+ from collections import Counter
5
+ from typing import Dict, List, Optional, Sized, Tuple, Union, Any
6
+
7
+ import torch
8
+ import numpy as np
9
+ from nltk import ngrams as ngram_tokenizer
10
+ from tokenizers import AddedToken
11
+ from transformers import PreTrainedTokenizer
12
+ from transformers.tokenization_utils_base import (BatchEncoding, EncodedInput,
13
+ TruncationStrategy)
14
+ from transformers.utils import logging
15
+ from transformers.utils.generic import PaddingStrategy, TensorType, to_py_obj
16
+
17
+ logger = logging.get_logger(__name__)
18
+
19
+
20
+ def load_vocab(vocab_file):
21
+ """Loads a vocabulary file into a dictionary."""
22
+ with open(vocab_file, "r", encoding="utf-8") as f:
23
+ vocab = json.load(f)
24
+ return vocab
25
+
26
+ def all_same(items):
27
+ return all(x == items[0] for x in items)
28
+
29
+ class NGMETokenizer(PreTrainedTokenizer):
30
+ model_input_names = ["input_ids", "attention_mask"]
31
+ vocab_file = "vocab.json"
32
+ vocab_files_names = {"vocab_file": vocab_file}
33
+
34
+ def __init__(
35
+ self, vocab_file, eos_token="\n", pad_token="\n", unk_token="<unk>", **kwargs
36
+ ):
37
+ super().__init__(
38
+ eos_token=eos_token, pad_token=pad_token, unk_token=unk_token, **kwargs
39
+ )
40
+
41
+
42
+ eos_token = (
43
+ AddedToken(
44
+ eos_token,
45
+ lstrip=False,
46
+ rstrip=False,
47
+ )
48
+ if isinstance(eos_token, str)
49
+ else eos_token
50
+ )
51
+ pad_token = (
52
+ AddedToken(
53
+ pad_token,
54
+ lstrip=False,
55
+ rstrip=False,
56
+ )
57
+ if isinstance(pad_token, str)
58
+ else pad_token
59
+ )
60
+ unk_token = (
61
+ AddedToken(
62
+ unk_token,
63
+ lstrip=False,
64
+ rstrip=False,
65
+ )
66
+ if isinstance(unk_token, str)
67
+ else unk_token
68
+ )
69
+
70
+ self._ngram2word2idx = {}
71
+ self._ngram2idx2word = {}
72
+ self._current_max_idx = 0
73
+ self._frequencies: Counter = Counter()
74
+
75
+ self._load_from_file(vocab_file)
76
+
77
+ for n in range(2, self.ngram+1):
78
+ self.model_input_names.append(f"ngram_{n}_sequence")
79
+
80
+ # TODO: COuld also be whitespace if n+1gram dont contain it
81
+ self._special_token = "Ġ"
82
+ assert self._special_token not in self._ngram2word2idx[1]
83
+
84
+ def __call__(self, *args, **kwargs) -> BatchEncoding:
85
+ if "return_ngram_sequences" in kwargs:
86
+ return_ngram_sequences = kwargs["return_ngram_sequences"]
87
+ del kwargs["return_ngram_sequences"]
88
+ else:
89
+ return_ngram_sequences = False
90
+
91
+ # We could check the args and kwargs beforehand and apply extra ngram sequences based on it, but
92
+ # we let HF handle all logic and reverse take the char sequence from the ids
93
+ batch_encoding = super().__call__(*args, **kwargs)
94
+
95
+ if return_ngram_sequences:
96
+ ngram_sequences = self.create_ngram_sequences(args[0])
97
+ # NOTE: This is pretty hard coded, lets just throw an error if the user wants to use it differently
98
+
99
+ if "padding" in kwargs:
100
+ if kwargs["padding"] == "max_length":
101
+ padded_sequences = {}
102
+ for n_key, sequence in ngram_sequences.items():
103
+ padded_sequences[n_key] = self.pad_sequence_right(sequence, len(batch_encoding["input_ids"][0]), self.pad_token_id)
104
+
105
+ ngram_sequences = padded_sequences
106
+ else:
107
+ raise ValueError(f"Padding {kwargs['padding']} not supported for ngram sequences")
108
+
109
+ if "truncation" in kwargs and kwargs["truncation"]:
110
+ truncated_sequences = {}
111
+ for n_key, sequence in ngram_sequences.items():
112
+ truncated_sequences[n_key] = self.truncate_sequence_right(sequence, len(batch_encoding["input_ids"][0]))
113
+ ngram_sequences = truncated_sequences
114
+
115
+
116
+ batch_encoding.update(ngram_sequences)
117
+
118
+ if "return_tensors" in kwargs:
119
+ batch_encoding.convert_to_tensors(kwargs["return_tensors"])
120
+
121
+ return batch_encoding
122
+
123
+ def pad_sequence_right(self, batched_sequence: List[List[int]], padding_length: int, padding_value: int) -> List[List[int]]:
124
+ padded_sequence = []
125
+ for sequence in batched_sequence:
126
+ padded_sequence.append(sequence + [padding_value] * (padding_length - len(sequence)))
127
+ return padded_sequence
128
+
129
+ def truncate_sequence_right(self, batched_sequence: List[List[int]], max_length: int) -> List[List[int]]:
130
+ truncated_sequence = []
131
+ for sequence in batched_sequence:
132
+ truncated_sequence.append(sequence[:max_length])
133
+ return truncated_sequence
134
+
135
+ def create_ngram_sequences(self, char_sequences: List[str]) -> Dict[str, Any]:
136
+
137
+ ngram_sequences_output = {}
138
+
139
+ if isinstance(char_sequences, str):
140
+ char_sequences = [char_sequences]
141
+
142
+ for n in range(2, self.ngram+1):
143
+ ngram_sequences = []
144
+ for char_sequence in char_sequences:
145
+ ngrams = ["".join(ngram) for ngram in ngram_tokenizer(char_sequence, n)]
146
+ # Fill in the front with existign unigrams, for same length and
147
+ # because the timestep t should not look ahead
148
+ ngrams = list(char_sequence[:n-1]) + ngrams
149
+ encoded_ngrams = self.encode(ngrams) if len(ngrams) > 0 else []
150
+ ngram_sequences.append(encoded_ngrams)
151
+
152
+ ngram_sequences_output[f"label_gram_{n}_sequence"] = ngram_sequences
153
+
154
+ return ngram_sequences_output
155
+
156
+ def _seq_size(self, encoded) -> Union[int, List[int]]:
157
+ if isinstance(encoded, torch.Tensor):
158
+ encoded = encoded.tolist()
159
+
160
+ if isinstance(encoded[0], list):
161
+ return [len(enc) for enc in encoded]
162
+
163
+ return len(encoded)
164
+
165
+
166
+ def _load_from_file(self, filename: str):
167
+ """Loads a dictionary from a file."""
168
+ vocab_file = load_vocab(filename)
169
+ self.ngram = vocab_file["ngram"]
170
+
171
+ if "\n" not in vocab_file["vocab"]:
172
+ self._add_ngram("\n", 1)
173
+
174
+ for token in vocab_file["vocab"]:
175
+ self._add_ngram(token["token"], token["ngram"])
176
+ self._frequencies.update({token["token"]: token["frequency"]})
177
+
178
+ def _add_ngram(self, word, ngram: int) -> int:
179
+ """Add a new n-gram token to the dictionary."""
180
+ self._frequencies.update({word: 1})
181
+
182
+ if ngram not in self._ngram2idx2word:
183
+ self._ngram2idx2word[ngram] = {self._current_max_idx: word}
184
+ self._ngram2word2idx[ngram] = {word: self._current_max_idx}
185
+ self._current_max_idx += 1
186
+ else:
187
+ if word not in self._ngram2word2idx[ngram]:
188
+ self._ngram2idx2word[ngram][self._current_max_idx] = word
189
+ self._ngram2word2idx[ngram][word] = self._current_max_idx
190
+ self._current_max_idx += 1
191
+
192
+ return self._ngram2word2idx[ngram][word]
193
+
194
+ def _is_contiguous(self):
195
+ vocab_size = len(self)
196
+ return list(range(vocab_size)) == [
197
+ idx for idx, token in self._get_all_tokens()
198
+ ]
199
+
200
+
201
+ def _get_all_tokens(self):
202
+ """Returns all tokens in the dictionary."""
203
+ for ngram in range(1, self.ngram + 1):
204
+ for idx, token in self._ngram2idx2word[ngram].items():
205
+ yield idx, token
206
+
207
+ def save_vocabulary(
208
+ self, save_directory: str, filename_prefix: Optional[str] = None
209
+ ) -> Tuple[str]:
210
+ filename = os.path.join(
211
+ save_directory,
212
+ (filename_prefix + "-" if filename_prefix else ""),
213
+ self.vocab_file,
214
+ )
215
+
216
+ index = 0
217
+ vocab = {"ngram": self.ngram, "vocab": []}
218
+
219
+ for ngram in range(1, self.ngram + 1):
220
+ for idx, token in self._ngram2idx2word[ngram].items():
221
+ if index != idx:
222
+ index = idx
223
+
224
+ try:
225
+ frequency = self._frequencies[token]
226
+ except KeyError:
227
+ frequency = -1
228
+
229
+ index += 1
230
+ vocab["vocab"].append(
231
+ {
232
+ "token": token,
233
+ "index": idx,
234
+ "frequency": frequency,
235
+ "ngram": ngram,
236
+ }
237
+ )
238
+
239
+ with open(filename, "w", encoding="utf-8") as writer:
240
+ json.dump(vocab, writer, indent=4, ensure_ascii=False)
241
+
242
+ return (filename,)
243
+
244
+ @property
245
+ def vocab_size(self) -> int:
246
+ return self._current_max_idx
247
+
248
+ def _tokenize(self, text: str) -> List[str]:
249
+ return list(text)
250
+
251
+ def get_idx(self, token: str, ngram: Optional[int] = None) -> int:
252
+ if ngram:
253
+ if token in self._ngram2word2idx[ngram]:
254
+ return self._ngram2word2idx[ngram][token]
255
+ else:
256
+ return self._ngram2word2idx[1]["<unk>"]
257
+
258
+ for ngram in range(1, self.ngram + 1):
259
+ if token in self._ngram2word2idx[ngram]:
260
+ return self._ngram2word2idx[ngram][token]
261
+
262
+ return self._ngram2word2idx[1]["<unk>"]
263
+
264
+ def _convert_ngram_tokens_to_ids(self, ngram_tokens: List[str]) -> List[int]:
265
+ return [self.get_idx(token) for token in ngram_tokens]
266
+
267
+ def convert_tokens_to_ids(self, tokens: List[str]):
268
+ if not tokens:
269
+ return []
270
+
271
+ if isinstance(tokens, str):
272
+ return self.get_idx(tokens)
273
+
274
+ return self._convert_ngram_tokens_to_ids(tokens)
275
+
276
+ def _convert_id_to_token(self, index: int) -> str:
277
+ return self.get_item_for_index(index)
278
+
279
+ def get_item_for_index(self, idx) -> str:
280
+
281
+ """Return the token for a given index."""
282
+ for idxs in self._ngram2idx2word.values():
283
+ if idx in idxs:
284
+ return idxs[idx]
285
+
286
+ return self.unk_token
287
+
288
+ def convert_tokens_to_string(self, tokens):
289
+ return "".join(tokens)
290
+
291
+ def create_weight_tensor(self) -> torch.Tensor:
292
+ unked_freqs = self._frequencies.most_common()
293
+
294
+ t = torch.ones(len(self))
295
+
296
+ for token, freq in unked_freqs:
297
+ t[self._ngram2word2idx[self._token_to_n_order(token)][token]] = freq
298
+
299
+ # Ensure the only whitespace character is weighted
300
+ t[self._ngram2word2idx[1][" "]] = 1.0
301
+
302
+ max_t = max(t)
303
+
304
+ normed_weights = torch.tensor([(1 - (x / (max_t + 1))).item() for x in t])
305
+
306
+ marker_tokens = [self.get_idx("<unk>", n) for n in range(1, self.ngram+1)]
307
+ marker_tokens.extend([self.get_idx("<start>", n) for n in range(1, self.ngram+1)])
308
+ # Instead of explicit ignore indexes, we use the weight vector and set target idxs to 0
309
+ for marker in marker_tokens:
310
+ normed_weights[marker] = 0
311
+
312
+ return normed_weights
313
+
314
+ def _token_to_n_order(self, token: str) -> int:
315
+ """Get N-gram order for a token"""
316
+ for n_gram, word2idx in self._ngram2word2idx.items():
317
+ if token in word2idx:
318
+ return n_gram
319
+
320
+ return 0
321
+
322
+
323
+ class GPTNGMETokenizer(PreTrainedTokenizer):
324
+ model_input_names = ["input_ids", "attention_mask"]
325
+ vocab_file = "vocab.json"
326
+ vocab_files_names = {"vocab_file": vocab_file}
327
+
328
+ def __init__(
329
+ self, vocab_file, eos_token="\n", pad_token="\n", unk_token="<unk>", **kwargs
330
+ ):
331
+ eos_token = (
332
+ AddedToken(
333
+ eos_token,
334
+ lstrip=False,
335
+ rstrip=False,
336
+ )
337
+ if isinstance(eos_token, str)
338
+ else eos_token
339
+ )
340
+ pad_token = (
341
+ AddedToken(
342
+ pad_token,
343
+ lstrip=False,
344
+ rstrip=False,
345
+ )
346
+ if isinstance(pad_token, str)
347
+ else pad_token
348
+ )
349
+ unk_token = (
350
+ AddedToken(
351
+ unk_token,
352
+ lstrip=False,
353
+ rstrip=False,
354
+ )
355
+ if isinstance(unk_token, str)
356
+ else unk_token
357
+ )
358
+
359
+ super().__init__(
360
+ eos_token=eos_token, pad_token=pad_token, unk_token=unk_token, **kwargs
361
+ )
362
+
363
+ self._ngram2word2idx = {}
364
+ self._ngram2idx2word = {}
365
+ self._current_max_idx = 0
366
+ self._frequencies: Counter = Counter()
367
+
368
+ self._load_from_file(vocab_file)
369
+
370
+ def _load_from_file(self, filename: str):
371
+ """Loads a dictionary from a file."""
372
+ vocab_file = load_vocab(filename)
373
+ self.ngram = vocab_file["ngram"]
374
+
375
+ if "\n" not in vocab_file["vocab"]:
376
+ self._add_ngram("\n", 1)
377
+
378
+ for token in vocab_file["vocab"]:
379
+ self._add_ngram(token["token"], token["ngram"])
380
+ self._frequencies.update({token["token"]: token["frequency"]})
381
+
382
+ def _add_ngram(self, word, ngram: int) -> int:
383
+ """Add a new n-gram token to the dictionary."""
384
+ self._frequencies.update({word: 1})
385
+
386
+ if ngram not in self._ngram2idx2word:
387
+ self._ngram2idx2word[ngram] = {self._current_max_idx: word}
388
+ self._ngram2word2idx[ngram] = {word: self._current_max_idx}
389
+ self._current_max_idx += 1
390
+ else:
391
+ if word not in self._ngram2word2idx[ngram]:
392
+ self._ngram2idx2word[ngram][self._current_max_idx] = word
393
+ self._ngram2word2idx[ngram][word] = self._current_max_idx
394
+ self._current_max_idx += 1
395
+
396
+ return self._ngram2word2idx[ngram][word]
397
+
398
+ def _is_contiguous(self):
399
+ vocab_size = len(self)
400
+ return list(range(vocab_size)) == [
401
+ idx for idx, token in self._get_all_tokens()
402
+ ]
403
+
404
+ def _get_all_tokens(self):
405
+ """Returns all tokens in the dictionary."""
406
+ for ngram in range(1, self.ngram + 1):
407
+ for idx, token in self._ngram2idx2word[ngram].items():
408
+ yield idx, token
409
+
410
+ def save_vocabulary(
411
+ self, save_directory: str, filename_prefix: Optional[str] = None
412
+ ) -> Tuple[str]:
413
+ filename = os.path.join(
414
+ save_directory,
415
+ (filename_prefix + "-" if filename_prefix else ""),
416
+ self.vocab_file,
417
+ )
418
+
419
+ index = 0
420
+ vocab = {"ngram": self.ngram, "vocab": []}
421
+
422
+ for ngram in range(1, self.ngram + 1):
423
+ for idx, token in self._ngram2idx2word[ngram].items():
424
+ if index != idx:
425
+ index = idx
426
+
427
+ try:
428
+ frequency = self._frequencies[token]
429
+ except KeyError:
430
+ frequency = -1
431
+
432
+ index += 1
433
+ vocab["vocab"].append(
434
+ {
435
+ "token": token,
436
+ "index": idx,
437
+ "frequency": frequency,
438
+ "ngram": ngram,
439
+ }
440
+ )
441
+
442
+ with open(filename, "w", encoding="utf-8") as writer:
443
+ json.dump(vocab, writer, indent=4, ensure_ascii=False)
444
+
445
+ return (filename,)
446
+
447
+ @property
448
+ def vocab_size(self) -> int:
449
+ return self._current_max_idx
450
+
451
+ def retokenize(self, input_ids, *args, **kwargs):
452
+ decoded = self.convert_ids_to_tokens(input_ids)
453
+ sequence = "".join(decoded)
454
+ new_decoded = self(sequence, *args, **kwargs).input_ids
455
+ return new_decoded
456
+
457
+ def _tokenize(self, text):
458
+ ngram_sequences = []
459
+ for n in range(1, self.ngram + 1):
460
+ words = ["<start>" for _ in range(1, n)]
461
+ words.extend(list(text))
462
+
463
+ tokens = []
464
+ for i, word in enumerate(ngram_tokenizer(words, n)):
465
+ if "<start>" in word:
466
+ word = [w for w in list(word) if w != "<start>"]
467
+ tokens.append("".join(word))
468
+
469
+ ngram_sequences.append(tokens)
470
+
471
+ return ngram_sequences
472
+
473
+ def get_idx(self, token: str, ngram: Optional[int] = None) -> int:
474
+ if ngram:
475
+ if token in self._ngram2word2idx[ngram]:
476
+ return self._ngram2word2idx[ngram][token]
477
+ else:
478
+ return self._ngram2word2idx[1]["<unk>"]
479
+
480
+ for ngram in range(1, self.ngram + 1):
481
+ if token in self._ngram2word2idx[ngram]:
482
+ return self._ngram2word2idx[ngram][token]
483
+
484
+ return self._ngram2word2idx[1]["<unk>"]
485
+
486
+ def _convert_ngram_tokens_to_ids(self, ngram_tokens: List[str]) -> List[int]:
487
+ return [self.get_idx(token) for token in ngram_tokens]
488
+
489
+ def convert_tokens_to_ids(self, tokens: List[List[str]]):
490
+ if not tokens:
491
+ return []
492
+
493
+ if isinstance(tokens, str):
494
+ return self.get_idx(tokens)
495
+
496
+ return [
497
+ self._convert_ngram_tokens_to_ids(ngram_tokens) for ngram_tokens in tokens
498
+ ]
499
+
500
+ def _convert_id_to_token(self, index: int) -> str:
501
+ return self.get_item_for_index(index)
502
+
503
+ def get_item_for_index(self, idx) -> str:
504
+ """Return the token for a given index."""
505
+ for idxs in self._ngram2idx2word.values():
506
+ if idx in idxs:
507
+ return idxs[idx]
508
+
509
+ return self.unk_token
510
+
511
+ def _decode(
512
+ self, token_ids: List[List[int]], skip_special_tokens: bool = False, **kwargs
513
+ ) -> str:
514
+ return "".join(self.convert_ids_to_tokens(token_ids[0]))
515
+
516
+ def debug_decode(self, token_ids: List[List[int]]):
517
+ for n in range(1, self.ngram+1):
518
+ print(f"{n}-gram: {self.convert_ids_to_tokens(token_ids[n-1])}")
519
+
520
+ def _pad(
521
+ self,
522
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
523
+ max_length: Optional[int] = None,
524
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
525
+ pad_to_multiple_of: Optional[int] = None,
526
+ return_attention_mask: Optional[bool] = None,
527
+ ) -> dict:
528
+ """
529
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
530
+
531
+ Args:
532
+ encoded_inputs:
533
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
534
+ max_length: maximum length of the returned list and optionally padding length (see below).
535
+ Will truncate by taking into account the special tokens.
536
+ padding_strategy: PaddingStrategy to use for padding.
537
+
538
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
539
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
540
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
541
+ The tokenizer padding sides are defined in self.padding_side:
542
+
543
+ - 'left': pads on the left of the sequences
544
+ - 'right': pads on the right of the sequences
545
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
546
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
547
+ `>= 7.5` (Volta).
548
+ return_attention_mask:
549
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
550
+ """
551
+ # encoded_inputs == one sample -> List[List[int]]
552
+
553
+ # Load from model defaults
554
+ if return_attention_mask is None:
555
+ return_attention_mask = "attention_mask" in self.model_input_names
556
+
557
+ required_input = encoded_inputs[self.model_input_names[0]]
558
+ # PHA: Check if we have a list of list of list, then we unpack
559
+ if (
560
+ len(required_input) != 0
561
+ and isinstance(required_input[0], list)
562
+ and isinstance(required_input[0][0], list)
563
+ ):
564
+ required_input = required_input[0]
565
+
566
+ if padding_strategy == PaddingStrategy.LONGEST:
567
+ max_length = len(required_input)
568
+
569
+ if (
570
+ max_length is not None
571
+ and pad_to_multiple_of is not None
572
+ and (max_length % pad_to_multiple_of != 0)
573
+ ):
574
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
575
+
576
+ needs_to_be_padded = (
577
+ padding_strategy != PaddingStrategy.DO_NOT_PAD
578
+ and len(required_input[0]) != max_length
579
+ )
580
+
581
+ # Initialize attention mask if not present.
582
+ if return_attention_mask and "attention_mask" not in encoded_inputs:
583
+ if len(required_input) == 0:
584
+ encoded_inputs["attention_mask"] = []
585
+ else:
586
+ encoded_inputs["attention_mask"] = [1] * len(required_input[0])
587
+
588
+ if needs_to_be_padded:
589
+ difference = max_length - len(required_input[0])
590
+
591
+ if self.padding_side == "right":
592
+ if return_attention_mask:
593
+ encoded_inputs["attention_mask"] = (
594
+ encoded_inputs["attention_mask"] + [0] * difference
595
+ )
596
+ if "token_type_ids" in encoded_inputs:
597
+ encoded_inputs["token_type_ids"] = (
598
+ encoded_inputs["token_type_ids"]
599
+ + [self.pad_token_type_id] * difference
600
+ )
601
+ if "special_tokens_mask" in encoded_inputs:
602
+ encoded_inputs["special_tokens_mask"] = (
603
+ encoded_inputs["special_tokens_mask"] + [1] * difference
604
+ )
605
+ for i in range(len(encoded_inputs[self.model_input_names[0]])):
606
+ encoded_inputs[self.model_input_names[0]][i] = (
607
+ required_input[i] + [self.pad_token_id] * difference
608
+ )
609
+ elif self.padding_side == "left":
610
+ if return_attention_mask:
611
+ encoded_inputs["attention_mask"] = [
612
+ 0
613
+ ] * difference + encoded_inputs["attention_mask"]
614
+ if "token_type_ids" in encoded_inputs:
615
+ encoded_inputs["token_type_ids"] = [
616
+ self.pad_token_type_id
617
+ ] * difference + encoded_inputs["token_type_ids"]
618
+ if "special_tokens_mask" in encoded_inputs:
619
+ encoded_inputs["special_tokens_mask"] = [
620
+ 1
621
+ ] * difference + encoded_inputs["special_tokens_mask"]
622
+
623
+ for i in range(len(encoded_inputs[self.model_input_names[0]])):
624
+ encoded_inputs[self.model_input_names[0]][i] = [
625
+ self.pad_token_id
626
+ ] * difference + required_input[i]
627
+ else:
628
+ raise ValueError("Invalid padding strategy:" + str(self.padding_side))
629
+
630
+ return encoded_inputs
631
+
632
+ def pad(
633
+ self,
634
+ encoded_inputs: Union[
635
+ BatchEncoding,
636
+ List[BatchEncoding],
637
+ Dict[str, EncodedInput],
638
+ Dict[str, List[EncodedInput]],
639
+ List[Dict[str, EncodedInput]],
640
+ ],
641
+ padding: Union[bool, str, PaddingStrategy] = True,
642
+ max_length: Optional[int] = None,
643
+ pad_to_multiple_of: Optional[int] = None,
644
+ return_attention_mask: Optional[bool] = None,
645
+ return_tensors: Optional[Union[str, TensorType]] = None,
646
+ verbose: bool = True,
647
+ ) -> BatchEncoding:
648
+ """
649
+ Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
650
+ in the batch.
651
+
652
+ Padding side (left/right) padding token ids are defined at the tokenizer level (with `self.padding_side`,
653
+
654
+ `self.pad_token_id` and `self.pad_token_type_id`).
655
+
656
+ Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the
657
+ text followed by a call to the `pad` method to get a padded encoding.
658
+
659
+ <Tip>
660
+
661
+ If the `encoded_inputs` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the
662
+ result will use the same type unless you provide a different tensor type with `return_tensors`. In the case of
663
+ PyTorch tensors, you will lose the specific device of your tensors however.
664
+
665
+ </Tip>
666
+
667
+ Args:
668
+ encoded_inputs ([`BatchEncoding`], list of [`BatchEncoding`], `Dict[str, List[int]]`, `Dict[str, List[List[int]]` or `List[Dict[str, List[int]]]`):
669
+ Tokenized inputs. Can represent one input ([`BatchEncoding`] or `Dict[str, List[int]]`) or a batch of
670
+ tokenized inputs (list of [`BatchEncoding`], *Dict[str, List[List[int]]]* or *List[Dict[str,
671
+ List[int]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader
672
+ collate function.
673
+
674
+ Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors), see
675
+ the note above for the return type.
676
+ padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
677
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding
678
+ index) among:
679
+
680
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
681
+ sequence if provided).
682
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
683
+ acceptable input length for the model if that argument is not provided.
684
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
685
+ lengths).
686
+ max_length (`int`, *optional*):
687
+ Maximum length of the returned list and optionally padding length (see above).
688
+ pad_to_multiple_of (`int`, *optional*):
689
+ If set will pad the sequence to a multiple of the provided value.
690
+
691
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
692
+ `>= 7.5` (Volta).
693
+ return_attention_mask (`bool`, *optional*):
694
+ Whether to return the attention mask. If left to the default, will return the attention mask according
695
+ to the specific tokenizer's default, defined by the `return_outputs` attribute.
696
+
697
+ [What are attention masks?](../glossary#attention-mask)
698
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
699
+ If set, will return tensors instead of list of python integers. Acceptable values are:
700
+
701
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
702
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
703
+ - `'np'`: Return Numpy `np.ndarray` objects.
704
+ verbose (`bool`, *optional*, defaults to `True`):
705
+ Whether or not to print more information and warnings.
706
+ """
707
+
708
+ # Problem: The pad function checks if the encoded_inputs is a list or not
709
+ # If it is a list it assumes that we have batches
710
+ # With ngme encoding the input is always a list
711
+
712
+ # If we have a list of dicts, let's convert it in a dict of lists
713
+ # We do this to allow using this method as a collate_fn function in PyTorch Dataloader
714
+ if isinstance(encoded_inputs, (list, tuple)) and isinstance(
715
+ encoded_inputs[0], Mapping
716
+ ):
717
+ encoded_inputs = {
718
+ key: [example[key] for example in encoded_inputs]
719
+ for key in encoded_inputs[0].keys()
720
+ }
721
+
722
+ # The model's main input name, usually `input_ids`, has be passed for padding
723
+ if self.model_input_names[0] not in encoded_inputs:
724
+ raise ValueError(
725
+ "You should supply an encoding or a list of encodings to this method "
726
+ f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}"
727
+ )
728
+
729
+ required_input = encoded_inputs[self.model_input_names[0]]
730
+
731
+ if required_input is None or (
732
+ isinstance(required_input, Sized) and len(required_input) == 0
733
+ ):
734
+ if return_attention_mask:
735
+ encoded_inputs["attention_mask"] = []
736
+ return encoded_inputs
737
+
738
+ # If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
739
+ # and rebuild them afterwards if no return_tensors is specified
740
+ # Note that we lose the specific device the tensor may be on for PyTorch
741
+
742
+ first_element = required_input[0]
743
+ # PHA: First element in ngme is a list of list
744
+ if isinstance(first_element, (list, tuple)):
745
+ # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
746
+ for item in required_input:
747
+ if len(item) != 0:
748
+ first_element = item[0]
749
+ break
750
+ # At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
751
+ if not isinstance(first_element, (int, list, tuple)):
752
+ if is_tf_tensor(first_element):
753
+ return_tensors = "tf" if return_tensors is None else return_tensors
754
+ elif is_torch_tensor(first_element):
755
+ return_tensors = "pt" if return_tensors is None else return_tensors
756
+ elif isinstance(first_element, np.ndarray):
757
+ return_tensors = "np" if return_tensors is None else return_tensors
758
+ else:
759
+ raise ValueError(
760
+ f"type of {first_element} unknown: {type(first_element)}. "
761
+ "Should be one of a python, numpy, pytorch or tensorflow object."
762
+ )
763
+
764
+ for key, value in encoded_inputs.items():
765
+ encoded_inputs[key] = to_py_obj(value)
766
+
767
+ # Convert padding_strategy in PaddingStrategy
768
+ padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
769
+ padding=padding, max_length=max_length, verbose=verbose
770
+ )
771
+
772
+ required_input = encoded_inputs[self.model_input_names[0]]
773
+
774
+ if required_input:
775
+ if isinstance(required_input[0], (list, tuple)):
776
+ if len(required_input[0]) > 0 and not isinstance(
777
+ required_input[0][0], (list, tuple)
778
+ ):
779
+ encoded_inputs = self._pad(
780
+ encoded_inputs,
781
+ max_length=max_length,
782
+ padding_strategy=padding_strategy,
783
+ pad_to_multiple_of=pad_to_multiple_of,
784
+ return_attention_mask=return_attention_mask,
785
+ )
786
+ return BatchEncoding(encoded_inputs, tensor_type=return_tensors)
787
+
788
+ batch_size = len(required_input)
789
+ assert all(
790
+ len(v) == batch_size for v in encoded_inputs.values()
791
+ ), "Some items in the output dictionary have a different batch size than others."
792
+
793
+ if padding_strategy == PaddingStrategy.LONGEST:
794
+ max_length = max(len(inputs[0]) for inputs in required_input)
795
+ padding_strategy = PaddingStrategy.MAX_LENGTH
796
+
797
+ batch_outputs = {}
798
+ for i in range(batch_size):
799
+ inputs = dict((k, v[i]) for k, v in encoded_inputs.items())
800
+ outputs = self._pad(
801
+ inputs,
802
+ max_length=max_length,
803
+ padding_strategy=padding_strategy,
804
+ pad_to_multiple_of=pad_to_multiple_of,
805
+ return_attention_mask=return_attention_mask,
806
+ )
807
+
808
+ for key, value in outputs.items():
809
+ if key not in batch_outputs:
810
+ batch_outputs[key] = []
811
+ batch_outputs[key].append(value)
812
+
813
+ return BatchEncoding(batch_outputs, tensor_type=return_tensors)
814
+
815
+ def prepare_for_model(
816
+ self,
817
+ ids: List[int],
818
+ pair_ids: Optional[List[int]] = None,
819
+ add_special_tokens: bool = True,
820
+ padding: Union[bool, str, PaddingStrategy] = False,
821
+ truncation: Union[bool, str, TruncationStrategy] = None,
822
+ max_length: Optional[int] = None,
823
+ stride: int = 0,
824
+ pad_to_multiple_of: Optional[int] = None,
825
+ return_tensors: Optional[Union[str, TensorType]] = None,
826
+ return_token_type_ids: Optional[bool] = None,
827
+ return_attention_mask: Optional[bool] = None,
828
+ return_overflowing_tokens: bool = False,
829
+ return_special_tokens_mask: bool = False,
830
+ return_offsets_mapping: bool = False,
831
+ return_length: bool = False,
832
+ verbose: bool = True,
833
+ prepend_batch_axis: bool = False,
834
+ **kwargs,
835
+ ) -> BatchEncoding:
836
+ """
837
+ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
838
+ adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
839
+ manages a moving window (with user defined stride) for overflowing tokens. Please Note, for *pair_ids*
840
+ different than `None` and *truncation_strategy = longest_first* or `True`, it is not possible to return
841
+ overflowing tokens. Such a combination of arguments will raise an error.
842
+ Args:
843
+ ids (`List[int]`):
844
+ Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
845
+ `convert_tokens_to_ids` methods.
846
+ pair_ids (`List[int]`, *optional*):
847
+ Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
848
+ and `convert_tokens_to_ids` methods.
849
+ """
850
+
851
+ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
852
+ (
853
+ padding_strategy,
854
+ truncation_strategy,
855
+ max_length,
856
+ kwargs,
857
+ ) = self._get_padding_truncation_strategies(
858
+ padding=padding,
859
+ truncation=truncation,
860
+ max_length=max_length,
861
+ pad_to_multiple_of=pad_to_multiple_of,
862
+ verbose=verbose,
863
+ **kwargs,
864
+ )
865
+
866
+ pair = bool(pair_ids is not None)
867
+
868
+ if len(ids) == 0:
869
+ len_ids = 0
870
+ else:
871
+ len_ids = len(ids[0])
872
+
873
+ if pair and len(pair_ids) == 0:
874
+ len_pair_ids = 0
875
+ elif pair and len(pair_ids) > 0:
876
+ len_pair_ids = len(pair_ids[0])
877
+ else:
878
+ len_pair_ids = 0
879
+
880
+ if return_token_type_ids and not add_special_tokens:
881
+ raise ValueError(
882
+ "Asking to return token_type_ids while setting add_special_tokens to False "
883
+ "results in an undefined behavior. Please set add_special_tokens to True or "
884
+ "set return_token_type_ids to None."
885
+ )
886
+
887
+ if (
888
+ return_overflowing_tokens
889
+ and truncation_strategy == TruncationStrategy.LONGEST_FIRST
890
+ and pair_ids is not None
891
+ ):
892
+ raise ValueError(
893
+ "Not possible to return overflowing tokens for pair of sequences with the "
894
+ "`longest_first`. Please select another truncation strategy than `longest_first`, "
895
+ "for instance `only_second` or `only_first`."
896
+ )
897
+
898
+ # Load from model defaults
899
+ if return_token_type_ids is None:
900
+ return_token_type_ids = "token_type_ids" in self.model_input_names
901
+ if return_attention_mask is None:
902
+ return_attention_mask = "attention_mask" in self.model_input_names
903
+
904
+ encoded_inputs = {}
905
+
906
+ # Compute the total size of the returned encodings
907
+ total_len = (
908
+ len_ids
909
+ + len_pair_ids
910
+ + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
911
+ )
912
+
913
+ # Truncation: Handle max sequence length
914
+ overflowing_tokens = []
915
+ if (
916
+ truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE
917
+ and max_length
918
+ and total_len > max_length
919
+ ):
920
+ ids, pair_ids, overflowing_tokens = self.truncate_sequences(
921
+ ids,
922
+ pair_ids=pair_ids,
923
+ num_tokens_to_remove=total_len - max_length,
924
+ truncation_strategy=truncation_strategy,
925
+ stride=stride,
926
+ )
927
+
928
+ if return_overflowing_tokens:
929
+ encoded_inputs["overflowing_tokens"] = overflowing_tokens
930
+ encoded_inputs["num_truncated_tokens"] = total_len - max_length
931
+
932
+ # Add special tokens
933
+ if add_special_tokens:
934
+ sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
935
+ token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
936
+ else:
937
+ sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
938
+ token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
939
+
940
+ # Build output dictionary
941
+ encoded_inputs["input_ids"] = sequence
942
+ if return_token_type_ids:
943
+ encoded_inputs["token_type_ids"] = token_type_ids
944
+ if return_special_tokens_mask:
945
+ if add_special_tokens:
946
+ encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(
947
+ ids, pair_ids
948
+ )
949
+ else:
950
+ encoded_inputs["special_tokens_mask"] = [0] * len(sequence)
951
+
952
+ # Check lengths
953
+ self._eventual_warn_about_too_long_sequence(
954
+ encoded_inputs["input_ids"], max_length, verbose
955
+ )
956
+
957
+ # Padding
958
+ if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
959
+ encoded_inputs = self.pad(
960
+ encoded_inputs,
961
+ max_length=max_length,
962
+ padding=padding_strategy.value,
963
+ pad_to_multiple_of=pad_to_multiple_of,
964
+ return_attention_mask=return_attention_mask,
965
+ )
966
+
967
+ if return_length:
968
+ encoded_inputs["length"] = len(encoded_inputs["input_ids"])
969
+
970
+ batch_outputs = BatchEncoding(
971
+ encoded_inputs,
972
+ tensor_type=return_tensors,
973
+ prepend_batch_axis=prepend_batch_axis,
974
+ )
975
+
976
+ return batch_outputs
977
+
978
+ def build_inputs_with_special_tokens(
979
+ self,
980
+ token_ids_0: List[List[int]],
981
+ token_ids_1: Optional[List[List[int]]] = None,
982
+ ) -> List[List[int]]:
983
+ """
984
+ Concatenate nested ngram sequences.
985
+
986
+ Args:
987
+ token_ids_0 (`List[List[int]]`): The first tokenized sequence.
988
+ token_ids_1 (`List[List[int]]`, *optional*): The second tokenized sequence.
989
+
990
+ Returns:
991
+ `List[List[int]]`: The model input with special tokens.
992
+ """
993
+ if token_ids_1 is None or len(token_ids_1) == 0:
994
+ return token_ids_0
995
+
996
+ if len(token_ids_0) == 0:
997
+ return token_ids_1
998
+
999
+ return np.concatenate(
1000
+ (np.array(token_ids_0), np.array(token_ids_1)), axis=1
1001
+ ).tolist()
1002
+
1003
+ def truncate_sequences(
1004
+ self,
1005
+ ids: List[int],
1006
+ pair_ids: Optional[List[int]] = None,
1007
+ num_tokens_to_remove: int = 0,
1008
+ truncation_strategy: Union[str, TruncationStrategy] = "longest_first",
1009
+ stride: int = 0,
1010
+ ) -> Tuple[List[int], List[int], List[int]]:
1011
+ """
1012
+ Truncates a sequence pair in-place following the strategy.
1013
+ Args:
1014
+ ids (`List[int]`):
1015
+ Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
1016
+ `convert_tokens_to_ids` methods.
1017
+ pair_ids (`List[int]`, *optional*):
1018
+ Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
1019
+ and `convert_tokens_to_ids` methods.
1020
+ num_tokens_to_remove (`int`, *optional*, defaults to 0):
1021
+ Number of tokens to remove using the truncation strategy.
1022
+ truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
1023
+ The strategy to follow for truncation. Can be:
1024
+ - `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
1025
+ maximum acceptable input length for the model if that argument is not provided. This will truncate
1026
+ token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a
1027
+ batch of pairs) is provided.
1028
+ - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
1029
+ maximum acceptable input length for the model if that argument is not provided. This will only
1030
+ truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
1031
+ - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
1032
+ maximum acceptable input length for the model if that argument is not provided. This will only
1033
+ truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
1034
+ - `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater
1035
+ than the model maximum admissible input size).
1036
+ stride (`int`, *optional*, defaults to 0):
1037
+ If set to a positive number, the overflowing tokens returned will contain some tokens from the main
1038
+ sequence returned. The value of this argument defines the number of additional tokens.
1039
+ Returns:
1040
+ `Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of
1041
+ overflowing tokens. Note: The *longest_first* strategy returns empty list of overflowing tokens if a pair
1042
+ of sequences (or a batch of pairs) is provided.
1043
+ """
1044
+ if num_tokens_to_remove <= 0:
1045
+ return ids, pair_ids, []
1046
+
1047
+ if not isinstance(truncation_strategy, TruncationStrategy):
1048
+ truncation_strategy = TruncationStrategy(truncation_strategy)
1049
+
1050
+ overflowing_tokens = []
1051
+ if truncation_strategy == TruncationStrategy.ONLY_FIRST or (
1052
+ truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is None
1053
+ ):
1054
+ ids = np.array(ids)
1055
+
1056
+ # PHA: I think we only truncate with longest first
1057
+ if ids.shape[1] > num_tokens_to_remove:
1058
+ window_len = min(ids.shape[1], stride + num_tokens_to_remove)
1059
+ if self.truncation_side == "left":
1060
+ overflowing_tokens = ids[:, :window_len]
1061
+ ids = ids[:, num_tokens_to_remove:]
1062
+ elif self.truncation_side == "right":
1063
+ overflowing_tokens = ids[-window_len:]
1064
+ ids = ids[:, :-num_tokens_to_remove]
1065
+ else:
1066
+ raise ValueError(
1067
+ f"invalid truncation strategy: {self.truncation_side}, use 'left' or 'right'."
1068
+ )
1069
+
1070
+ ids = ids.tolist()
1071
+
1072
+ else:
1073
+ error_msg = (
1074
+ f"We need to remove {num_tokens_to_remove} to truncate the input "
1075
+ f"but the first sequence has a length {len(ids)}. "
1076
+ )
1077
+ if truncation_strategy == TruncationStrategy.ONLY_FIRST:
1078
+ error_msg = (
1079
+ error_msg + "Please select another truncation strategy than "
1080
+ f"{truncation_strategy}, for instance 'longest_first' or 'only_second'."
1081
+ )
1082
+ logger.error(error_msg)
1083
+ elif truncation_strategy == TruncationStrategy.LONGEST_FIRST:
1084
+ logger.warning(
1085
+ "Be aware, overflowing tokens are not returned for the setting you have chosen,"
1086
+ f" i.e. sequence pairs with the '{TruncationStrategy.LONGEST_FIRST.value}' "
1087
+ "truncation strategy. So the returned list will always be empty even if some "
1088
+ "tokens have been removed."
1089
+ )
1090
+ ids = np.array(ids)
1091
+ pair_ids = np.array(pair_ids)
1092
+
1093
+ for _ in range(num_tokens_to_remove):
1094
+ if pair_ids is None or ids.shape[1] > pair_ids.shape[1]:
1095
+ if self.truncation_side == "right":
1096
+ ids = ids[:, :-1]
1097
+ elif self.truncation_side == "left":
1098
+ ids = ids[:, 1:]
1099
+ else:
1100
+ raise ValueError(
1101
+ "invalid truncation strategy:" + str(self.truncation_side)
1102
+ )
1103
+ else:
1104
+ if self.truncation_side == "right":
1105
+ pair_ids = pair_ids[:, :-1]
1106
+ elif self.truncation_side == "left":
1107
+ pair_ids = pair_ids[:, 1:]
1108
+ else:
1109
+ raise ValueError(
1110
+ "invalid truncation strategy:" + str(self.truncation_side)
1111
+ )
1112
+
1113
+ ids = ids.tolist()
1114
+ pair_ids = pair_ids.tolist()
1115
+
1116
+ elif (
1117
+ truncation_strategy == TruncationStrategy.ONLY_SECOND
1118
+ and pair_ids is not None
1119
+ ):
1120
+ raise NotImplementedError(
1121
+ "PHA: I think we only truncate with longest first"
1122
+ )
1123
+ if len(pair_ids) > num_tokens_to_remove:
1124
+ window_len = min(len(pair_ids), stride + num_tokens_to_remove)
1125
+ if self.truncation_side == "right":
1126
+ overflowing_tokens = pair_ids[-window_len:]
1127
+ pair_ids = pair_ids[:-num_tokens_to_remove]
1128
+ elif self.truncation_side == "left":
1129
+ overflowing_tokens = pair_ids[:window_len]
1130
+ pair_ids = pair_ids[num_tokens_to_remove:]
1131
+ else:
1132
+ raise ValueError(
1133
+ "invalid truncation strategy:" + str(self.truncation_side)
1134
+ )
1135
+ else:
1136
+ logger.error(
1137
+ f"We need to remove {num_tokens_to_remove} to truncate the input "
1138
+ f"but the second sequence has a length {len(pair_ids)}. "
1139
+ f"Please select another truncation strategy than {truncation_strategy}, "
1140
+ "for instance 'longest_first' or 'only_first'."
1141
+ )
1142
+
1143
+ return (ids, pair_ids, overflowing_tokens)
1144
+
1145
+ def _token_to_n_order(self, token: str) -> int:
1146
+ """Get N-gram order for a token"""
1147
+ for n_gram, word2idx in self._ngram2word2idx.items():
1148
+ if token in word2idx:
1149
+ return n_gram
1150
+
1151
+ return 0
1152
+
1153
+ def create_weight_tensor(self) -> torch.Tensor:
1154
+ unked_freqs = self._frequencies.most_common()
1155
+
1156
+ t = torch.ones(len(self))
1157
+
1158
+ for token, freq in unked_freqs:
1159
+ t[self._ngram2word2idx[self._token_to_n_order(token)][token]] = freq
1160
+
1161
+ # Ensure the only whitespace character is weighted
1162
+ t[self._ngram2word2idx[1][" "]] = 1.0
1163
+
1164
+ normed_weights = torch.tensor([(1 - (x / (max(t) + 1))).item() for x in t])
1165
+
1166
+ marker_tokens = [self.get_idx("<unk>", n) for n in range(1, self.ngram+1)]
1167
+ marker_tokens.extend([self.get_idx("<start>", n) for n in range(1, self.ngram+1)])
1168
+ # Instead of explicit ignore indexes, we use the weight vector and set target idxs to 0
1169
+ for marker in marker_tokens:
1170
+ normed_weights[marker] = 0
1171
+
1172
+ return normed_weights
1173
+
1174
+ class TestTokenizer(unittest.TestCase):
1175
+
1176
+ def test_one(self):
1177
+ vocab_file = "/home/phmaker/Projects/ngme/vocabs/1-gram-babylm.json"
1178
+
1179
+ t = NGMETokenizer(vocab_file)
1180
+ self.assertEqual(t.get_idx("<unk>", 1), 1)
1181
+
1182
+ result = t("hello world")
1183
+ self.assertEqual(result.input_ids, [16, 3, 11, 11, 8, 2, 21, 8, 9, 11, 12])
1184
+
1185
+ result = t("<unk>")
1186
+ self.assertEqual(result.input_ids, [1, 13, 5, 24, 1])
1187
+
1188
+ result = t(["hello world", "<unk>"])
1189
+ self.assertEqual(result.input_ids, [[16, 3, 11, 11, 8, 2, 21, 8, 9, 11, 12], [1, 13, 5, 24, 1]])
1190
+
1191
+ def test_three(self):
1192
+ vocab_file = "/home/phmaker/Projects/ngme/vocabs/3-gram-babylm.json"
1193
+
1194
+ t = NGMETokenizer(vocab_file)
1195
+
1196
+ result = t("hello world")
1197
+ self.assertEqual(result.input_ids, [16, 3, 11, 11, 8, 2, 21, 8, 9, 11, 12])
1198
+
1199
+ result = t("hello", return_ngram_sequences=True)
1200
+
1201
+ result = t(["hello world"], return_ngram_sequences=True)
1202
+ two_gram_expected = [[16, 208, 229, 230, 231, 1, 1, 312, 257, 499, 306]]
1203
+
1204
+ self.assertEqual(result["gram_2_sequence"], two_gram_expected)
1205
+ self.assertEqual(t._ngram2idx2word[1][16], "h")
1206
+ self.assertEqual(t._ngram2idx2word[2][208], "he")
1207
+ self.assertEqual(t._ngram2idx2word[2][229], "el")
1208
+
1209
+ def test_unks(self):
1210
+ vocab_file = "/home/phmaker/Projects/ngme/vocabs/2-gram-wiki-en.json"
1211
+ t = NGMETokenizer(vocab_file)
1212
+ result = t("OciVDjöShG", return_ngram_sequences=True, return_tensors="pt")
1213
+
1214
+ def test_decode(self):
1215
+ vocab_file = "/home/phmaker/Projects/ngme/vocabs/3-gram-babylm.json"
1216
+ t = NGMETokenizer(vocab_file)
1217
+ decoded = t.decode(208)
1218
+ assert decoded == "he"
1219
+
1220
+ def test_padding(self):
1221
+ vocab_file = "/home/phmaker/Projects/ngme/vocabs/3-gram-babylm.json"
1222
+ t = NGMETokenizer(vocab_file)
1223
+ result = t("hello world", return_tensors="pt", padding="max_length", max_length=20, return_ngram_sequences=True)
1224
+
1225
+ self.assertEqual(result.input_ids.shape, (1, 20))
1226
+ self.assertEqual(result.gram_2_sequence.shape, (1, 20))
1227
+ self.assertEqual(result.gram_3_sequence.shape, (1, 20))
1228
+
1229
+ def test_truncation(self):
1230
+ vocab_file = "/home/phmaker/Projects/ngme/vocabs/3-gram-babylm.json"
1231
+ t = NGMETokenizer(vocab_file)
1232
+
1233
+ result = t("hello world", return_tensors="pt", truncation=True, max_length=5, return_ngram_sequences=True)
1234
+ self.assertEqual(result.input_ids.shape, (1, 5))
1235
+ self.assertEqual(result.gram_2_sequence.shape, (1, 5))
1236
+
1237
+
1238
+ def test_padding_and_truncation(self):
1239
+ vocab_file = "/home/phmaker/Projects/ngme/vocabs/3-gram-babylm.json"
1240
+ t = NGMETokenizer(vocab_file)
1241
+
1242
+ result = t(["four", "something longer"], return_tensors="pt", padding="max_length", truncation=True, max_length=5, return_ngram_sequences=True)
1243
+ self.assertEqual(result.input_ids.shape, (2, 5))
1244
+ self.assertEqual(result.gram_2_sequence.shape, (2, 5))
1245
+
1246
+
1247
+
1248
+ if __name__ == "__main__":
1249
+ unittest.main()
1250
+