TrainedSentiment / README.md
PathofthePeople's picture
End of training
2938950 verified
---
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: TrainedSentiment
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# TrainedSentiment
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0299
- Accuracy: 0.9833
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 38 | 0.6023 | 0.6233 |
| No log | 2.0 | 76 | 0.4643 | 0.7883 |
| No log | 3.0 | 114 | 0.4152 | 0.8233 |
| No log | 4.0 | 152 | 0.2017 | 0.93 |
| No log | 5.0 | 190 | 0.1128 | 0.9617 |
| No log | 6.0 | 228 | 0.0679 | 0.9767 |
| No log | 7.0 | 266 | 0.0548 | 0.9783 |
| No log | 8.0 | 304 | 0.0476 | 0.98 |
| No log | 9.0 | 342 | 0.0460 | 0.9817 |
| No log | 10.0 | 380 | 0.0414 | 0.9833 |
| No log | 11.0 | 418 | 0.0414 | 0.9817 |
| No log | 12.0 | 456 | 0.0387 | 0.9817 |
| No log | 13.0 | 494 | 0.0377 | 0.9833 |
| 0.2188 | 14.0 | 532 | 0.0353 | 0.9833 |
| 0.2188 | 15.0 | 570 | 0.0329 | 0.9833 |
| 0.2188 | 16.0 | 608 | 0.0314 | 0.985 |
| 0.2188 | 17.0 | 646 | 0.0308 | 0.985 |
| 0.2188 | 18.0 | 684 | 0.0300 | 0.985 |
| 0.2188 | 19.0 | 722 | 0.0297 | 0.985 |
| 0.2188 | 20.0 | 760 | 0.0299 | 0.9833 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.3.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2