Paranchai's picture
Update README.md
75ce31a verified
metadata
library_name: transformers
license: cc-by-sa-4.0
base_model: airesearch/wav2vec2-large-xlsr-53-th
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: wav2vec2-large-xlsr-53-th-speech-emotion-recognition-3c
    results: []

wav2vec2-large-xlsr-53-th-speech-emotion-recognition-3c

This model is a fine-tuned version of airesearch/wav2vec2-large-xlsr-53-th on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4445
  • Accuracy: 0.8492

Model description

three emotion [Anger , Happiness , Neutral]

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0305 0.9956 57 1.0278 0.4874
0.6947 1.9913 114 0.6649 0.6645
0.622 2.9869 171 0.5644 0.7607
0.5051 4.0 229 0.4936 0.7967
0.4791 4.9956 286 0.4235 0.8328
0.3918 5.9913 343 0.4273 0.8328
0.3399 6.9869 400 0.4316 0.8437
0.3473 8.0 458 0.4013 0.8448
0.3276 8.9956 515 0.4140 0.8437
0.3355 9.9913 572 0.4069 0.8459
0.2958 10.9869 629 0.4440 0.8372
0.2803 12.0 687 0.4381 0.8404
0.2996 12.9956 744 0.4100 0.8492
0.2995 13.9913 801 0.4310 0.8459
0.2645 14.9869 858 0.4590 0.8393
0.279 16.0 916 0.4317 0.8492
0.249 16.9956 973 0.4564 0.8437
0.238 17.9913 1030 0.4473 0.8459
0.209 18.9869 1087 0.4428 0.8492
0.2323 19.9127 1140 0.4445 0.8492

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1