metadata
library_name: transformers
license: cc-by-sa-4.0
base_model: airesearch/wav2vec2-large-xlsr-53-th
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-large-xlsr-53-th-speech-emotion-recognition-3c
results: []
wav2vec2-large-xlsr-53-th-speech-emotion-recognition-3c
This model is a fine-tuned version of airesearch/wav2vec2-large-xlsr-53-th on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4445
- Accuracy: 0.8492
Model description
three emotion [Anger , Happiness , Neutral]
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0305 | 0.9956 | 57 | 1.0278 | 0.4874 |
0.6947 | 1.9913 | 114 | 0.6649 | 0.6645 |
0.622 | 2.9869 | 171 | 0.5644 | 0.7607 |
0.5051 | 4.0 | 229 | 0.4936 | 0.7967 |
0.4791 | 4.9956 | 286 | 0.4235 | 0.8328 |
0.3918 | 5.9913 | 343 | 0.4273 | 0.8328 |
0.3399 | 6.9869 | 400 | 0.4316 | 0.8437 |
0.3473 | 8.0 | 458 | 0.4013 | 0.8448 |
0.3276 | 8.9956 | 515 | 0.4140 | 0.8437 |
0.3355 | 9.9913 | 572 | 0.4069 | 0.8459 |
0.2958 | 10.9869 | 629 | 0.4440 | 0.8372 |
0.2803 | 12.0 | 687 | 0.4381 | 0.8404 |
0.2996 | 12.9956 | 744 | 0.4100 | 0.8492 |
0.2995 | 13.9913 | 801 | 0.4310 | 0.8459 |
0.2645 | 14.9869 | 858 | 0.4590 | 0.8393 |
0.279 | 16.0 | 916 | 0.4317 | 0.8492 |
0.249 | 16.9956 | 973 | 0.4564 | 0.8437 |
0.238 | 17.9913 | 1030 | 0.4473 | 0.8459 |
0.209 | 18.9869 | 1087 | 0.4428 | 0.8492 |
0.2323 | 19.9127 | 1140 | 0.4445 | 0.8492 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1