FT-english-10m / README.md
Pageee's picture
End of training
640101c verified
|
raw
history blame
1.87 kB
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - librispeech_asr
metrics:
  - wer
model-index:
  - name: Whisper-Small En-10m
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: librispeech
          type: librispeech_asr
          config: default
          split: None
          args: 'config: en, split: test-clean'
        metrics:
          - name: Wer
            type: wer
            value: 3.9340386065757555

Whisper-Small En-10m

This model is a fine-tuned version of openai/whisper-small on the librispeech dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2449
  • Wer: 3.9340

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.016 16.6667 100 0.2507 3.8973
0.0019 33.3333 200 0.2449 3.9340

Framework versions

  • Transformers 4.41.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1