Padomin's picture
update model card README.md
5a29c4d
|
raw
history blame
3.1 kB
metadata
license: cc-by-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - te_dx_jp
model-index:
  - name: t5-base-TEDxJP-8front-1body-8rear
    results: []

t5-base-TEDxJP-8front-1body-8rear

This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4383
  • Wer: 0.1703
  • Mer: 0.1643
  • Wil: 0.2498
  • Wip: 0.7502
  • Hits: 55917
  • Substitutions: 6285
  • Deletions: 2385
  • Insertions: 2327
  • Cer: 0.1338

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 10
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Wer Mer Wil Wip Hits Substitutions Deletions Insertions Cer
0.5634 1.0 1457 0.4668 0.2271 0.2101 0.2986 0.7014 55139 6756 2692 5219 0.1993
0.5335 2.0 2914 0.4168 0.1852 0.1776 0.2649 0.7351 55407 6467 2713 2782 0.1495
0.4453 3.0 4371 0.4124 0.1738 0.1678 0.2545 0.7455 55683 6391 2513 2321 0.1344
0.388 4.0 5828 0.4082 0.1703 0.1646 0.2502 0.7498 55838 6297 2452 2249 0.1324
0.3448 5.0 7285 0.4156 0.1704 0.1646 0.2505 0.7495 55840 6320 2427 2257 0.1339
0.3103 6.0 8742 0.4177 0.1690 0.1632 0.2484 0.7516 55955 6263 2369 2280 0.1324
0.3369 7.0 10199 0.4225 0.1688 0.1631 0.2480 0.7520 55930 6230 2427 2244 0.1327
0.3127 8.0 11656 0.4294 0.1692 0.1636 0.2489 0.7511 55876 6265 2446 2220 0.1331
0.2739 9.0 13113 0.4329 0.1702 0.1643 0.2501 0.7499 55903 6316 2368 2307 0.1338
0.269 10.0 14570 0.4383 0.1703 0.1643 0.2498 0.7502 55917 6285 2385 2327 0.1338

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1