metadata
license: cc-by-sa-4.0
tags:
- generated_from_trainer
datasets:
- te_dx_jp
model-index:
- name: t5-base-TEDxJP-7front-1body-7rear
results: []
t5-base-TEDxJP-7front-1body-7rear
This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:
- Loss: 0.4380
- Wer: 0.1697
- Mer: 0.1639
- Wil: 0.2501
- Wip: 0.7499
- Hits: 55904
- Substitutions: 6350
- Deletions: 2333
- Insertions: 2275
- Cer: 0.1321
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.5926 | 1.0 | 1457 | 0.4717 | 0.2141 | 0.2008 | 0.2898 | 0.7102 | 55014 | 6714 | 2859 | 4253 | 0.1829 |
0.4821 | 2.0 | 2914 | 0.4178 | 0.1796 | 0.1733 | 0.2595 | 0.7405 | 55368 | 6348 | 2871 | 2384 | 0.1452 |
0.4444 | 3.0 | 4371 | 0.4103 | 0.1768 | 0.1700 | 0.2561 | 0.7439 | 55745 | 6359 | 2483 | 2577 | 0.1416 |
0.3824 | 4.0 | 5828 | 0.4145 | 0.1712 | 0.1653 | 0.2516 | 0.7484 | 55844 | 6362 | 2381 | 2314 | 0.1335 |
0.3481 | 5.0 | 7285 | 0.4133 | 0.1722 | 0.1659 | 0.2512 | 0.7488 | 55917 | 6283 | 2387 | 2449 | 0.1357 |
0.312 | 6.0 | 8742 | 0.4204 | 0.1719 | 0.1659 | 0.2516 | 0.7484 | 55845 | 6315 | 2427 | 2363 | 0.1360 |
0.3001 | 7.0 | 10199 | 0.4253 | 0.1684 | 0.1629 | 0.2486 | 0.7514 | 55908 | 6297 | 2382 | 2200 | 0.1312 |
0.3152 | 8.0 | 11656 | 0.4282 | 0.1689 | 0.1632 | 0.2491 | 0.7509 | 55909 | 6317 | 2361 | 2228 | 0.1322 |
0.2716 | 9.0 | 13113 | 0.4338 | 0.1694 | 0.1637 | 0.2497 | 0.7503 | 55865 | 6316 | 2406 | 2217 | 0.1321 |
0.2544 | 10.0 | 14570 | 0.4380 | 0.1697 | 0.1639 | 0.2501 | 0.7499 | 55904 | 6350 | 2333 | 2275 | 0.1321 |
Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.12.1