Padomin's picture
update model card README.md
b0ae64f
|
raw
history blame
3.1 kB
metadata
license: cc-by-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - te_dx_jp
model-index:
  - name: t5-base-TEDxJP-7front-1body-7rear
    results: []

t5-base-TEDxJP-7front-1body-7rear

This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4380
  • Wer: 0.1697
  • Mer: 0.1639
  • Wil: 0.2501
  • Wip: 0.7499
  • Hits: 55904
  • Substitutions: 6350
  • Deletions: 2333
  • Insertions: 2275
  • Cer: 0.1321

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Wer Mer Wil Wip Hits Substitutions Deletions Insertions Cer
0.5926 1.0 1457 0.4717 0.2141 0.2008 0.2898 0.7102 55014 6714 2859 4253 0.1829
0.4821 2.0 2914 0.4178 0.1796 0.1733 0.2595 0.7405 55368 6348 2871 2384 0.1452
0.4444 3.0 4371 0.4103 0.1768 0.1700 0.2561 0.7439 55745 6359 2483 2577 0.1416
0.3824 4.0 5828 0.4145 0.1712 0.1653 0.2516 0.7484 55844 6362 2381 2314 0.1335
0.3481 5.0 7285 0.4133 0.1722 0.1659 0.2512 0.7488 55917 6283 2387 2449 0.1357
0.312 6.0 8742 0.4204 0.1719 0.1659 0.2516 0.7484 55845 6315 2427 2363 0.1360
0.3001 7.0 10199 0.4253 0.1684 0.1629 0.2486 0.7514 55908 6297 2382 2200 0.1312
0.3152 8.0 11656 0.4282 0.1689 0.1632 0.2491 0.7509 55909 6317 2361 2228 0.1322
0.2716 9.0 13113 0.4338 0.1694 0.1637 0.2497 0.7503 55865 6316 2406 2217 0.1321
0.2544 10.0 14570 0.4380 0.1697 0.1639 0.2501 0.7499 55904 6350 2333 2275 0.1321

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1