metadata
license: cc-by-sa-4.0
tags:
- generated_from_trainer
datasets:
- te_dx_jp
model-index:
- name: t5-base-TEDxJP-5front-1body-5rear
results: []
t5-base-TEDxJP-5front-1body-5rear
This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:
- Loss: 0.4373
- Wer: 0.1699
- Mer: 0.1642
- Wil: 0.2499
- Wip: 0.7501
- Hits: 55848
- Substitutions: 6297
- Deletions: 2442
- Insertions: 2236
- Cer: 0.1360
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.5812 | 1.0 | 1457 | 0.4658 | 0.2393 | 0.2197 | 0.3076 | 0.6924 | 54882 | 6717 | 2988 | 5750 | 0.2187 |
0.5253 | 2.0 | 2914 | 0.4264 | 0.1832 | 0.1756 | 0.2632 | 0.7368 | 55549 | 6498 | 2540 | 2793 | 0.1520 |
0.4412 | 3.0 | 4371 | 0.4161 | 0.1728 | 0.1670 | 0.2535 | 0.7465 | 55665 | 6363 | 2559 | 2240 | 0.1360 |
0.3465 | 4.0 | 5828 | 0.4155 | 0.1706 | 0.1650 | 0.2504 | 0.7496 | 55756 | 6266 | 2565 | 2186 | 0.1356 |
0.3575 | 5.0 | 7285 | 0.4196 | 0.1696 | 0.1642 | 0.2498 | 0.7502 | 55781 | 6283 | 2523 | 2151 | 0.1358 |
0.3556 | 6.0 | 8742 | 0.4164 | 0.1687 | 0.1632 | 0.2487 | 0.7513 | 55857 | 6274 | 2456 | 2167 | 0.1341 |
0.3145 | 7.0 | 10199 | 0.4245 | 0.1705 | 0.1648 | 0.2504 | 0.7496 | 55819 | 6297 | 2471 | 2244 | 0.1355 |
0.3074 | 8.0 | 11656 | 0.4266 | 0.1693 | 0.1639 | 0.2494 | 0.7506 | 55799 | 6274 | 2514 | 2148 | 0.1358 |
0.269 | 9.0 | 13113 | 0.4352 | 0.1693 | 0.1637 | 0.2492 | 0.7508 | 55878 | 6288 | 2421 | 2225 | 0.1346 |
0.3162 | 10.0 | 14570 | 0.4373 | 0.1699 | 0.1642 | 0.2499 | 0.7501 | 55848 | 6297 | 2442 | 2236 | 0.1360 |
Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.12.1