Padomin's picture
update model card README.md
0b4e103
|
raw
history blame
3.1 kB
metadata
license: cc-by-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - te_dx_jp
model-index:
  - name: t5-base-TEDxJP-5front-1body-5rear
    results: []

t5-base-TEDxJP-5front-1body-5rear

This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4392
  • Wer: 0.1702
  • Mer: 0.1644
  • Wil: 0.2508
  • Wip: 0.7492
  • Hits: 55879
  • Substitutions: 6371
  • Deletions: 2337
  • Insertions: 2282
  • Cer: 0.1330

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Wer Mer Wil Wip Hits Substitutions Deletions Insertions Cer
0.5939 1.0 1457 0.4718 0.2101 0.1989 0.2858 0.7142 54640 6461 3486 3620 0.1750
0.5477 2.0 2914 0.4248 0.1821 0.1750 0.2625 0.7375 55437 6468 2682 2613 0.1517
0.4481 3.0 4371 0.4129 0.1726 0.1668 0.2544 0.7456 55654 6453 2480 2212 0.1350
0.3919 4.0 5828 0.4108 0.1719 0.1661 0.2526 0.7474 55754 6367 2466 2271 0.1349
0.353 5.0 7285 0.4125 0.1693 0.1637 0.2493 0.7507 55856 6287 2444 2206 0.1336
0.3367 6.0 8742 0.4194 0.1696 0.1639 0.2493 0.7507 55886 6271 2430 2256 0.1324
0.2959 7.0 10199 0.4274 0.1698 0.1643 0.2502 0.7498 55810 6318 2459 2193 0.1343
0.2979 8.0 11656 0.4304 0.1711 0.1652 0.2516 0.7484 55871 6367 2349 2338 0.1337
0.2714 9.0 13113 0.4363 0.1694 0.1637 0.2501 0.7499 55884 6354 2349 2239 0.1319
0.2797 10.0 14570 0.4392 0.1702 0.1644 0.2508 0.7492 55879 6371 2337 2282 0.1330

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1