metadata
license: cc-by-sa-4.0
tags:
- generated_from_trainer
datasets:
- te_dx_jp
model-index:
- name: t5-base-TEDxJP-5front-1body-5rear
results: []
t5-base-TEDxJP-5front-1body-5rear
This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:
- Loss: 0.4392
- Wer: 0.1702
- Mer: 0.1644
- Wil: 0.2508
- Wip: 0.7492
- Hits: 55879
- Substitutions: 6371
- Deletions: 2337
- Insertions: 2282
- Cer: 0.1330
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.5939 | 1.0 | 1457 | 0.4718 | 0.2101 | 0.1989 | 0.2858 | 0.7142 | 54640 | 6461 | 3486 | 3620 | 0.1750 |
0.5477 | 2.0 | 2914 | 0.4248 | 0.1821 | 0.1750 | 0.2625 | 0.7375 | 55437 | 6468 | 2682 | 2613 | 0.1517 |
0.4481 | 3.0 | 4371 | 0.4129 | 0.1726 | 0.1668 | 0.2544 | 0.7456 | 55654 | 6453 | 2480 | 2212 | 0.1350 |
0.3919 | 4.0 | 5828 | 0.4108 | 0.1719 | 0.1661 | 0.2526 | 0.7474 | 55754 | 6367 | 2466 | 2271 | 0.1349 |
0.353 | 5.0 | 7285 | 0.4125 | 0.1693 | 0.1637 | 0.2493 | 0.7507 | 55856 | 6287 | 2444 | 2206 | 0.1336 |
0.3367 | 6.0 | 8742 | 0.4194 | 0.1696 | 0.1639 | 0.2493 | 0.7507 | 55886 | 6271 | 2430 | 2256 | 0.1324 |
0.2959 | 7.0 | 10199 | 0.4274 | 0.1698 | 0.1643 | 0.2502 | 0.7498 | 55810 | 6318 | 2459 | 2193 | 0.1343 |
0.2979 | 8.0 | 11656 | 0.4304 | 0.1711 | 0.1652 | 0.2516 | 0.7484 | 55871 | 6367 | 2349 | 2338 | 0.1337 |
0.2714 | 9.0 | 13113 | 0.4363 | 0.1694 | 0.1637 | 0.2501 | 0.7499 | 55884 | 6354 | 2349 | 2239 | 0.1319 |
0.2797 | 10.0 | 14570 | 0.4392 | 0.1702 | 0.1644 | 0.2508 | 0.7492 | 55879 | 6371 | 2337 | 2282 | 0.1330 |
Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.12.1