|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- wnut_17 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: distilbert-base-token |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: wnut_17 |
|
type: wnut_17 |
|
config: wnut_17 |
|
split: test |
|
args: wnut_17 |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.5302197802197802 |
|
- name: Recall |
|
type: recall |
|
value: 0.3577386468952734 |
|
- name: F1 |
|
type: f1 |
|
value: 0.42722744881018265 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.945320849899534 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert-base-token |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2636 |
|
- Precision: 0.5302 |
|
- Recall: 0.3577 |
|
- F1: 0.4272 |
|
- Accuracy: 0.9453 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 107 | 0.3099 | 0.3522 | 0.1214 | 0.1806 | 0.9321 | |
|
| No log | 2.0 | 214 | 0.2670 | 0.5139 | 0.3086 | 0.3856 | 0.9410 | |
|
| No log | 3.0 | 321 | 0.2547 | 0.4954 | 0.3466 | 0.4079 | 0.9426 | |
|
| No log | 4.0 | 428 | 0.2553 | 0.5337 | 0.3596 | 0.4297 | 0.9452 | |
|
| 0.1736 | 5.0 | 535 | 0.2636 | 0.5302 | 0.3577 | 0.4272 | 0.9453 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.29.2 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.13.3 |
|
|