Feature Extraction
sentence-transformers
PyTorch
Safetensors
Transformers
German
English
xlm-roberta
semantic textual similarity
sts
semantic search
sentence similarity
paraphrasing
documents retrieval
passage retrieval
information retrieval
sentence-transformer
text-embeddings-inference
Inference Endpoints
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- de
|
4 |
+
- en
|
5 |
+
pipeline_tag: feature-extraction
|
6 |
+
tags:
|
7 |
+
- semantic textual similarity
|
8 |
+
- sts
|
9 |
+
- semantic search
|
10 |
+
- sentence similarity
|
11 |
+
- paraphrasing
|
12 |
+
- documents retrieval
|
13 |
+
- passage retrieval
|
14 |
+
- information retrieval
|
15 |
+
- sentence-transformer
|
16 |
+
- feature-extraction
|
17 |
+
- transformers
|
18 |
+
task_categories:
|
19 |
+
- sentence-similarity
|
20 |
+
- feature-extraction
|
21 |
+
- text-retrieval
|
22 |
+
- other
|
23 |
+
library_name: sentence-transformers
|
24 |
+
---
|
25 |
+
|
26 |
+
# Model card for PM-AI/paraphrase-distilroberta-base-v2_de-en
|
27 |
+
For internal purposes and for testing, we have made a monolingual paraphrasing model from Sentence Transformers usable for _German + English_ via [Knowledge Distillation](https://arxiv.org/abs/2004.09813).
|
28 |
+
The decision was made in favor of [sentence-transformers/paraphrase-distilroberta-base-v2](https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v2) because this model has not public available multilingual version (to our knowledge).
|
29 |
+
In addition, it has a significantly more training samples compared to its predecessor: 83.3 million samples were used instead of 24.6 million samples.
|
30 |
+
|
31 |
+
## Training
|
32 |
+
1) Download of datasets
|
33 |
+
2) Execution of knowledge distillation
|
34 |
+
|
35 |
+
### Training Data
|
36 |
+
Datasets used based on [offical source](https://www.sbert.net/examples/training/paraphrases/README.html):
|
37 |
+
- _AllNLI_
|
38 |
+
- _sentence-compression_
|
39 |
+
- _SimpleWiki_
|
40 |
+
- _altlex_
|
41 |
+
- _msmarco-triplets_
|
42 |
+
- _quora_duplicates_
|
43 |
+
- _coco_captions_
|
44 |
+
- _flickr30k_captions_
|
45 |
+
- _yahoo_answers_title_question_
|
46 |
+
- _S2ORC_citation_pairs_
|
47 |
+
- _stackexchange_duplicate_questions_
|
48 |
+
- _wiki-atomic-edits_
|
49 |
+
|
50 |
+
### Training Execution
|
51 |
+
|
52 |
+
First we downloaded some german-english parallel datasets via [get_parallel_data_*.py](https://github.com/UKPLab/sentence-transformers/tree/b86eec31cf0a102ad786ba1ff31bfeb4998d3ca5/examples/training/multilingual).
|
53 |
+
|
54 |
+
These datasets are: _Tatoeba_, _WikiMatrix_, _TED2020_, _OpenSubtitles_, _Europarl_, _News-Commentary_
|
55 |
+
|
56 |
+
Then we started knowledge distillation with [make_multilingual_sys.py](https://github.com/UKPLab/sentence-transformers/blob/b86eec31cf0a102ad786ba1ff31bfeb4998d3ca5/examples/training/multilingual/make_multilingual_sys.py)
|
57 |
+
|
58 |
+
#### Parameterization of training
|
59 |
+
- **Script:** [make_multilingual_sys.py](https://github.com/UKPLab/sentence-transformers/blob/b86eec31cf0a102ad786ba1ff31bfeb4998d3ca5/examples/training/multilingual/make_multilingual_sys.py)
|
60 |
+
- **Datasets:** Tatoeba, WikiMatrix, TED2020, OpenSubtitles, Europarl, News-Commentary
|
61 |
+
- **GPU:** NVIDIA A40 (Driver Version: 515.48.07; CUDA Version: 11.7)
|
62 |
+
- **Batch Size:** 64
|
63 |
+
- **Max Sequence Length:** 256
|
64 |
+
- **Train Max Sentence Length:** 600
|
65 |
+
- **Max Sentences Per Train File:** 1000000
|
66 |
+
- **Teacher Model:** [sentence-transformers/paraphrase-distilroberta-base-v2](https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v2)
|
67 |
+
- **Student Model:** [xlm-roberta-base](https://huggingface.co/xlm-roberta-base)
|
68 |
+
- **Loss Function:** MSE Loss
|
69 |
+
- **Learning Rate:** 2e-5
|
70 |
+
- **Epochs:** 20
|
71 |
+
- **Evaluation Steps:** 10000
|
72 |
+
- **Warmup Steps:** 10000
|
73 |
+
|
74 |
+
### Acknowledgment
|
75 |
+
|
76 |
+
This work is a collaboration between [Technical University of Applied Sciences Wildau (TH Wildau)](https://en.th-wildau.de/) and [sense.ai.tion GmbH](https://senseaition.com/).
|
77 |
+
You can contact us via:
|
78 |
+
* [Philipp Müller (M.Eng.)](https://www.linkedin.com/in/herrphilipps); Author
|
79 |
+
* [Prof. Dr. Janett Mohnke](mailto:icampus@th-wildau.de); TH Wildau
|
80 |
+
* [Dr. Matthias Boldt, Jörg Oehmichen](mailto:info@senseaition.com); sense.AI.tion GmbH
|
81 |
+
|
82 |
+
This work was funded by the European Regional Development Fund (EFRE) and the State of Brandenburg. Project/Vorhaben: "ProFIT: Natürlichsprachliche Dialogassistenten in der Pflege".
|
83 |
+
|
84 |
+
<div style="display:flex">
|
85 |
+
<div style="padding-left:20px;">
|
86 |
+
<a href="https://efre.brandenburg.de/efre/de/"><img src="https://huggingface.co/datasets/PM-AI/germandpr-beir/resolve/main/res/EFRE-Logo_rechts_oweb_en_rgb.jpeg" alt="Logo of European Regional Development Fund (EFRE)" width="200"/></a>
|
87 |
+
</div>
|
88 |
+
<div style="padding-left:20px;">
|
89 |
+
<a href="https://www.senseaition.com"><img src="https://senseaition.com/wp-content/uploads/thegem-logos/logo_c847aaa8f42141c4055d4a8665eb208d_3x.png" alt="Logo of senseaition GmbH" width="200"/></a>
|
90 |
+
</div>
|
91 |
+
<div style="padding-left:20px;">
|
92 |
+
<a href="https://www.th-wildau.de"><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/f/f6/TH_Wildau_Logo.png/640px-TH_Wildau_Logo.png" alt="Logo of TH Wildau" width="180"/></a>
|
93 |
+
</div>
|
94 |
+
</div>
|