|
--- |
|
datasets: |
|
- PKU-Alignment/PKU-SafeRLHF |
|
language: |
|
- en |
|
tags: |
|
- reinforcement-learning-from-human-feedback |
|
- reinforcement-learning |
|
- beaver |
|
- safety |
|
- llama |
|
- ai-safety |
|
- deepspeed |
|
- rlhf |
|
- alpaca |
|
library_name: safe-rlhf |
|
--- |
|
|
|
# 🦫 Beaver's Reward Model |
|
|
|
## Model Details |
|
|
|
The Beaver reward model is a preference model trained using the [PKU-SafeRLHF](https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF) dataset. |
|
It can play a role in the safe RLHF algorithm, helping the Beaver model become more helpful. |
|
|
|
- **Developed by:** the [PKU-Alignment](https://github.com/PKU-Alignment) Team. |
|
- **Model Type:** An auto-regressive language model based on the transformer architecture. |
|
- **License:** Non-commercial license. |
|
- **Fine-tuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca). |
|
|
|
## Model Sources |
|
|
|
- **Repository:** <https://github.com/PKU-Alignment/safe-rlhf> |
|
- **Beaver:** <https://huggingface.co/PKU-Alignment/beaver-7b-v1.0> |
|
- **Dataset:** <https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF> |
|
- **Reward Model:** <https://huggingface.co/PKU-Alignment/beaver-7b-v1.0-reward> |
|
- **Cost Model:** <https://huggingface.co/PKU-Alignment/beaver-7b-v1.0-cost> |
|
- **Dataset Paper:** <https://arxiv.org/abs/2307.04657> |
|
- **Paper:** <https://arxiv.org/abs/2310.12773> |
|
|
|
## How to Use the Reward Model |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer |
|
from safe_rlhf.models import AutoModelForScore |
|
|
|
model = AutoModelForScore.from_pretrained('PKU-Alignment/beaver-7b-v1.0-reward', torch_dtype=torch.bfloat16, device_map='auto') |
|
tokenizer = AutoTokenizer.from_pretrained('PKU-Alignment/beaver-7b-v1.0-reward') |
|
|
|
input = 'BEGINNING OF CONVERSATION: USER: hello ASSISTANT:Hello! How can I help you today?' |
|
|
|
input_ids = tokenizer(input, return_tensors='pt') |
|
output = model(**input_ids) |
|
print(output) |
|
|
|
# ScoreModelOutput( |
|
# scores=tensor([[[-19.7500], |
|
# [-19.3750], |
|
# [-20.1250], |
|
# [-18.0000], |
|
# [-20.0000], |
|
# [-23.8750], |
|
# [-23.5000], |
|
# [-22.0000], |
|
# [-21.0000], |
|
# [-20.1250], |
|
# [-23.7500], |
|
# [-21.6250], |
|
# [-21.7500], |
|
# [-12.9375], |
|
# [ -6.4375], |
|
# [ -8.1250], |
|
# [ -7.3438], |
|
# [ -9.1875], |
|
# [-13.6250], |
|
# [-10.5625], |
|
# [ -9.9375], |
|
# [ -6.4375], |
|
# [ -6.0938], |
|
# [ -5.8438], |
|
# [ -6.6562], |
|
# [ -5.9688], |
|
# [ -9.1875], |
|
# [-11.4375]]], grad_fn=<ToCopyBackward0>), |
|
# end_scores=tensor([[-11.4375]], grad_fn=<ToCopyBackward0>), |
|
# last_hidden_state=tensor([[[ 0.7461, -0.6055, -0.4980, ..., 0.1670, 0.7812, -0.3242], |
|
# [ 0.7383, -0.5391, -0.1836, ..., -0.1396, 0.5273, -0.2256], |
|
# [ 0.6836, -0.7031, -0.3730, ..., 0.2100, 0.5000, -0.6328], |
|
# ..., |
|
# [-1.7969, 1.0234, 1.0234, ..., -0.8047, 0.2500, -0.8398], |
|
# [ 2.0469, -1.3203, 0.8984, ..., -0.7734, -1.4141, -1.6797], |
|
# [ 4.3438, -0.6953, 0.9648, ..., -0.1787, 0.6680, -3.0000]]], |
|
# dtype=torch.bfloat16, grad_fn=<ToCopyBackward0>), |
|
# end_last_hidden_state=tensor([[ 4.3438, -0.6953, 0.9648, ..., -0.1787, 0.6680, -3.0000]], |
|
# dtype=torch.bfloat16, grad_fn=<ToCopyBackward0>), |
|
# end_index=tensor([27]) |
|
# ) |
|
``` |
|
|