XuehaiPan's picture
Update README.md
375cd6a
|
raw
history blame
3.41 kB
---
datasets:
- PKU-Alignment/PKU-SafeRLHF
language:
- en
tags:
- reinforcement-learning-from-human-feedback
- reinforcement-learning
- beaver
- safety
- llama
- ai-safety
- deepspeed
- rlhf
- alpaca
library_name: safe-rlhf
---
# 🦫 Beaver's Reward Model
## Model Details
The Beaver reward model is a preference model trained using the [PKU-SafeRLHF](https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF) dataset.
It can play a role in the safe RLHF algorithm, helping the Beaver model become more helpful.
- **Developed by:** the [PKU-Alignment](https://github.com/PKU-Alignment) Team.
- **Model Type:** An auto-regressive language model based on the transformer architecture.
- **License:** Non-commercial license.
- **Fine-tuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca).
## Model Sources
- **Repository:** <https://github.com/PKU-Alignment/safe-rlhf>
- **Beaver:** <https://huggingface.co/PKU-Alignment/beaver-7b-v1.0>
- **Dataset:** <https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF>
- **Reward Model:** <https://huggingface.co/PKU-Alignment/beaver-7b-v1.0-reward>
- **Cost Model:** <https://huggingface.co/PKU-Alignment/beaver-7b-v1.0-cost>
- **Dataset Paper:** <https://arxiv.org/abs/2307.04657>
- **Paper:** <https://arxiv.org/abs/2310.12773>
## How to Use the Reward Model
```python
import torch
from transformers import AutoTokenizer
from safe_rlhf.models import AutoModelForScore
model = AutoModelForScore.from_pretrained('PKU-Alignment/beaver-7b-v1.0-reward', torch_dtype=torch.bfloat16, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained('PKU-Alignment/beaver-7b-v1.0-reward')
input = 'BEGINNING OF CONVERSATION: USER: hello ASSISTANT:Hello! How can I help you today?'
input_ids = tokenizer(input, return_tensors='pt')
output = model(**input_ids)
print(output)
# ScoreModelOutput(
# scores=tensor([[[-19.7500],
# [-19.3750],
# [-20.1250],
# [-18.0000],
# [-20.0000],
# [-23.8750],
# [-23.5000],
# [-22.0000],
# [-21.0000],
# [-20.1250],
# [-23.7500],
# [-21.6250],
# [-21.7500],
# [-12.9375],
# [ -6.4375],
# [ -8.1250],
# [ -7.3438],
# [ -9.1875],
# [-13.6250],
# [-10.5625],
# [ -9.9375],
# [ -6.4375],
# [ -6.0938],
# [ -5.8438],
# [ -6.6562],
# [ -5.9688],
# [ -9.1875],
# [-11.4375]]], grad_fn=<ToCopyBackward0>),
# end_scores=tensor([[-11.4375]], grad_fn=<ToCopyBackward0>),
# last_hidden_state=tensor([[[ 0.7461, -0.6055, -0.4980, ..., 0.1670, 0.7812, -0.3242],
# [ 0.7383, -0.5391, -0.1836, ..., -0.1396, 0.5273, -0.2256],
# [ 0.6836, -0.7031, -0.3730, ..., 0.2100, 0.5000, -0.6328],
# ...,
# [-1.7969, 1.0234, 1.0234, ..., -0.8047, 0.2500, -0.8398],
# [ 2.0469, -1.3203, 0.8984, ..., -0.7734, -1.4141, -1.6797],
# [ 4.3438, -0.6953, 0.9648, ..., -0.1787, 0.6680, -3.0000]]],
# dtype=torch.bfloat16, grad_fn=<ToCopyBackward0>),
# end_last_hidden_state=tensor([[ 4.3438, -0.6953, 0.9648, ..., -0.1787, 0.6680, -3.0000]],
# dtype=torch.bfloat16, grad_fn=<ToCopyBackward0>),
# end_index=tensor([27])
# )
```