TianyiQ commited on
Commit
85e1d59
1 Parent(s): bd184a9

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/models-pku/progressalign/shared_storage/downloaded_models/llama3-8b-base",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 128000,
9
+ "eos_token_id": 128001,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 14336,
14
+ "max_position_embeddings": 8192,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 32,
18
+ "num_key_value_heads": 8,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_scaling": null,
22
+ "rope_theta": 500000.0,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "float16",
25
+ "transformers_version": "4.40.0",
26
+ "use_cache": false,
27
+ "vocab_size": 128256
28
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "eos_token_id": 128001,
5
+ "transformers_version": "4.40.0"
6
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step155
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bff82a21ed1453cea78d67a378bd05880171c01c3ed2b723f91bf7ed3b5894b
3
+ size 4976698592
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcee6d9e9fc3673c95a5e23b0b7ce68d35c14211d84d5198c53d2deab1ce68a1
3
+ size 4999802616
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ed66f1f489f2c36ad450c84621e6761acb28bc69cbc56e873caeb19cd94a570
3
+ size 4915916080
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22cd45dfa234e7c41768491f79087839f3828dcd91bc55327b9953bec24ac8c0
3
+ size 1168138808
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16060522496
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
296
+ "model.norm.weight": "model-00004-of-00004.safetensors"
297
+ }
298
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90b304f4cf4b5141480605ee4261846b7767b05a1f9d6f10fc6e30f2d58fc004
3
+ size 15984
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac9998a65c4acb775f5fc4ce7aee3709a8fc457e5636a8402d2dea7ba06770c1
3
+ size 15984
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cccc635d988f8d366b514e533f286ed39c470a2ce64ced60bb701f2d2fe29c98
3
+ size 15984
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:552d73ec212ddad164c55ca069f86524d2633ac33016885486c8c12d4b07c7ac
3
+ size 15984
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bee8b4ba744a7b776e10f66b8d081a9b60035ed34e692467fee579b993f3192e
3
+ size 15984
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68437801db591d108fc1279315667d18c803273753d9f3b9fc41fdd6c1e79439
3
+ size 15984
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25e4bfc719988be9cca5017a9c2e3e3b0dc9018db047e2f1f527321721e233e0
3
+ size 15984
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d50fcb35839935b929675237a883b92465bdda9a3e60b8573fe9cba155d6d325
3
+ size 15984
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cae086ce767da5cccc408b88e9f46a1e86e24bc37454f64a2d89c4cad7d672ff
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end_of_text|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<|end_of_text|>"
17
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,2065 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|reserved_special_token_2|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_3|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|reserved_special_token_4|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|reserved_special_token_5|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_6|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_7|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_8|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_9|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_10|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_11|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_12|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_13|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_14|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_15|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_16|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_17|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_18|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_19|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_20|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_21|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_22|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_23|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_24|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_25|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_26|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_27|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_28|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_29|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_30|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_31|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_32|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_33|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_34|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_35|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_36|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_37|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_38|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_39|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_40|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_41|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_42|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_43|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_44|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_45|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_46|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_47|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_48|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_49|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_50|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_51|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_52|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_53|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_54|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_55|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_56|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_57|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_58|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_59|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_60|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_61|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_62|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_63|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_64|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_65|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_66|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_67|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_68|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_69|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_70|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_71|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_72|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_73|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_74|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_75|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_76|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_77|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_78|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_79|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_80|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_81|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_82|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_83|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_84|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_85|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_86|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_87|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_88|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_89|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_90|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_91|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_92|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_93|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_94|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_95|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_96|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_97|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_98|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_99|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_100|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_101|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_102|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_103|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_104|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_105|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_106|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_107|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_108|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_109|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_110|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_111|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_112|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_113|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_114|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_115|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_116|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_117|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_118|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_119|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_120|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_121|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_122|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_123|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_124|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_125|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_126|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_127|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_128|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_129|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_130|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_131|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_132|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_133|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_134|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_135|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_136|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_137|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_138|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_139|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_140|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_141|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_142|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_143|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_144|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_145|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_146|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_147|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_148|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_149|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_150|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_151|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_152|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_153|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_154|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_155|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_156|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_157|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_158|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_159|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_160|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_161|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_162|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_163|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_164|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_165|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_166|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_167|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_168|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_169|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_170|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_171|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_172|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_173|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_174|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_175|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_176|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_177|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_178|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_179|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_180|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_181|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_182|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_183|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_184|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_185|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_186|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_187|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_188|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_189|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_190|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_191|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_192|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_193|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_194|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_195|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_196|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_197|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_198|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_199|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_200|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_201|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_202|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_203|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_204|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_205|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_206|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_207|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_208|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_209|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_210|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_211|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_212|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_213|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_214|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_215|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_216|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_217|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_218|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_219|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_220|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_221|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_222|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_223|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_224|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_225|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_226|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_227|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_228|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_229|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_230|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_231|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_232|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_233|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_234|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_235|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_236|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_237|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_238|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_239|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_240|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_241|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_242|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_243|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_244|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_245|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_246|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_247|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_248|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_249|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_250|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{% set system_message = 'Below is an instruction that describes a task. Write a response that appropriately completes the request.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ system_message }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '### Instruction:\\n' + content + '\\n\\n### Response:\\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|end_of_text|>' + '\\n\\n' }}{% endif %}{% endfor %}",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|end_of_text|>",
2056
+ "model_input_names": [
2057
+ "input_ids",
2058
+ "attention_mask"
2059
+ ],
2060
+ "model_max_length": 1000000000000000019884624838656,
2061
+ "pad_token": "<|end_of_text|>",
2062
+ "padding_side": "right",
2063
+ "split_special_tokens": false,
2064
+ "tokenizer_class": "PreTrainedTokenizerFast"
2065
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 1, "total_steps": 616, "loss": 2.6141, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.0, "epoch": 0.006493506493506494, "percentage": 0.16, "elapsed_time": "0:00:22", "remaining_time": "3:48:17"}
2
+ {"current_steps": 1, "total_steps": 616, "loss": null, "eval_loss": 2.635435104370117, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.006493506493506494, "percentage": 0.16, "elapsed_time": "0:00:22", "remaining_time": "3:48:17"}
3
+ {"current_steps": 5, "total_steps": 616, "loss": 2.657, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.25e-06, "epoch": 0.032467532467532464, "percentage": 0.81, "elapsed_time": "0:01:43", "remaining_time": "3:31:24"}
4
+ {"current_steps": 5, "total_steps": 616, "loss": null, "eval_loss": 2.6205813884735107, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.032467532467532464, "percentage": 0.81, "elapsed_time": "0:01:43", "remaining_time": "3:31:24"}
5
+ {"current_steps": 10, "total_steps": 616, "loss": 2.6337, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.25e-06, "epoch": 0.06493506493506493, "percentage": 1.62, "elapsed_time": "0:04:35", "remaining_time": "4:38:39"}
6
+ {"current_steps": 10, "total_steps": 616, "loss": null, "eval_loss": 2.5846035480499268, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.06493506493506493, "percentage": 1.62, "elapsed_time": "0:04:35", "remaining_time": "4:38:39"}
7
+ {"current_steps": 15, "total_steps": 616, "loss": 2.5268, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9e-06, "epoch": 0.09740259740259741, "percentage": 2.44, "elapsed_time": "0:07:29", "remaining_time": "5:00:19"}
8
+ {"current_steps": 15, "total_steps": 616, "loss": null, "eval_loss": 2.5515594482421875, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.09740259740259741, "percentage": 2.44, "elapsed_time": "0:07:29", "remaining_time": "5:00:19"}
9
+ {"current_steps": 20, "total_steps": 616, "loss": 2.5275, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.275e-05, "epoch": 0.12987012987012986, "percentage": 3.25, "elapsed_time": "0:10:28", "remaining_time": "5:12:04"}
10
+ {"current_steps": 20, "total_steps": 616, "loss": null, "eval_loss": 2.5321404933929443, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.12987012987012986, "percentage": 3.25, "elapsed_time": "0:10:28", "remaining_time": "5:12:04"}
11
+ {"current_steps": 25, "total_steps": 616, "loss": 2.5005, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4457320927100615e-05, "epoch": 0.16233766233766234, "percentage": 4.06, "elapsed_time": "0:13:27", "remaining_time": "5:18:06"}
12
+ {"current_steps": 25, "total_steps": 616, "loss": null, "eval_loss": 2.513052225112915, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.16233766233766234, "percentage": 4.06, "elapsed_time": "0:13:27", "remaining_time": "5:18:06"}
13
+ {"current_steps": 30, "total_steps": 616, "loss": 2.5339, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3178060763055965e-05, "epoch": 0.19480519480519481, "percentage": 4.87, "elapsed_time": "0:16:21", "remaining_time": "5:19:38"}
14
+ {"current_steps": 30, "total_steps": 616, "loss": null, "eval_loss": 2.496060609817505, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.19480519480519481, "percentage": 4.87, "elapsed_time": "0:16:21", "remaining_time": "5:19:38"}
15
+ {"current_steps": 35, "total_steps": 616, "loss": 2.5335, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.200291011775234e-05, "epoch": 0.22727272727272727, "percentage": 5.68, "elapsed_time": "0:19:14", "remaining_time": "5:19:30"}
16
+ {"current_steps": 35, "total_steps": 616, "loss": null, "eval_loss": 2.4807701110839844, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.22727272727272727, "percentage": 5.68, "elapsed_time": "0:19:14", "remaining_time": "5:19:30"}
17
+ {"current_steps": 40, "total_steps": 616, "loss": 2.4252, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.092418047398154e-05, "epoch": 0.2597402597402597, "percentage": 6.49, "elapsed_time": "0:22:05", "remaining_time": "5:18:09"}
18
+ {"current_steps": 40, "total_steps": 616, "loss": null, "eval_loss": 2.464339256286621, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.2597402597402597, "percentage": 6.49, "elapsed_time": "0:22:05", "remaining_time": "5:18:09"}
19
+ {"current_steps": 45, "total_steps": 616, "loss": 2.4445, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.934692235419926e-06, "epoch": 0.2922077922077922, "percentage": 7.31, "elapsed_time": "0:24:59", "remaining_time": "5:17:08"}
20
+ {"current_steps": 45, "total_steps": 616, "loss": null, "eval_loss": 2.4518375396728516, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.2922077922077922, "percentage": 7.31, "elapsed_time": "0:24:59", "remaining_time": "5:17:08"}
21
+ {"current_steps": 50, "total_steps": 616, "loss": 2.4594, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.02774500281382e-06, "epoch": 0.3246753246753247, "percentage": 8.12, "elapsed_time": "0:27:55", "remaining_time": "5:16:03"}
22
+ {"current_steps": 50, "total_steps": 616, "loss": null, "eval_loss": 2.4393582344055176, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.3246753246753247, "percentage": 8.12, "elapsed_time": "0:27:55", "remaining_time": "5:16:03"}
23
+ {"current_steps": 55, "total_steps": 616, "loss": 2.4498, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.197089350822288e-06, "epoch": 0.35714285714285715, "percentage": 8.93, "elapsed_time": "0:30:50", "remaining_time": "5:14:32"}
24
+ {"current_steps": 55, "total_steps": 616, "loss": null, "eval_loss": 2.4287211894989014, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.35714285714285715, "percentage": 8.93, "elapsed_time": "0:30:50", "remaining_time": "5:14:32"}
25
+ {"current_steps": 60, "total_steps": 616, "loss": 2.3821, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.436900041840997e-06, "epoch": 0.38961038961038963, "percentage": 9.74, "elapsed_time": "0:33:43", "remaining_time": "5:12:30"}
26
+ {"current_steps": 60, "total_steps": 616, "loss": null, "eval_loss": 2.4184141159057617, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.38961038961038963, "percentage": 9.74, "elapsed_time": "0:33:43", "remaining_time": "5:12:30"}
27
+ {"current_steps": 65, "total_steps": 616, "loss": 2.4317, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.741750615310939e-06, "epoch": 0.42207792207792205, "percentage": 10.55, "elapsed_time": "0:36:37", "remaining_time": "5:10:31"}
28
+ {"current_steps": 65, "total_steps": 616, "loss": null, "eval_loss": 2.4091267585754395, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.42207792207792205, "percentage": 10.55, "elapsed_time": "0:36:37", "remaining_time": "5:10:31"}
29
+ {"current_steps": 70, "total_steps": 616, "loss": 2.3931, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.106589293139538e-06, "epoch": 0.45454545454545453, "percentage": 11.36, "elapsed_time": "0:39:31", "remaining_time": "5:08:19"}
30
+ {"current_steps": 70, "total_steps": 616, "loss": null, "eval_loss": 2.40012788772583, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.45454545454545453, "percentage": 11.36, "elapsed_time": "0:39:31", "remaining_time": "5:08:19"}
31
+ {"current_steps": 75, "total_steps": 616, "loss": 2.3695, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.526716143930102e-06, "epoch": 0.487012987012987, "percentage": 12.18, "elapsed_time": "0:42:25", "remaining_time": "5:06:04"}
32
+ {"current_steps": 75, "total_steps": 616, "loss": null, "eval_loss": 2.3934359550476074, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.487012987012987, "percentage": 12.18, "elapsed_time": "0:42:25", "remaining_time": "5:06:04"}
33
+ {"current_steps": 80, "total_steps": 616, "loss": 2.3981, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.997761450728939e-06, "epoch": 0.5194805194805194, "percentage": 12.99, "elapsed_time": "0:45:19", "remaining_time": "5:03:40"}
34
+ {"current_steps": 80, "total_steps": 616, "loss": null, "eval_loss": 2.3855459690093994, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.5194805194805194, "percentage": 12.99, "elapsed_time": "0:45:19", "remaining_time": "5:03:40"}
35
+ {"current_steps": 85, "total_steps": 616, "loss": 2.3952, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.515665228960038e-06, "epoch": 0.551948051948052, "percentage": 13.8, "elapsed_time": "0:48:14", "remaining_time": "5:01:22"}
36
+ {"current_steps": 85, "total_steps": 616, "loss": null, "eval_loss": 2.37890887260437, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.551948051948052, "percentage": 13.8, "elapsed_time": "0:48:14", "remaining_time": "5:01:22"}
37
+ {"current_steps": 90, "total_steps": 616, "loss": 2.4137, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.0766578431245434e-06, "epoch": 0.5844155844155844, "percentage": 14.61, "elapsed_time": "0:51:09", "remaining_time": "4:59:01"}
38
+ {"current_steps": 90, "total_steps": 616, "loss": null, "eval_loss": 2.3720638751983643, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.5844155844155844, "percentage": 14.61, "elapsed_time": "0:51:09", "remaining_time": "4:59:01"}
39
+ {"current_steps": 95, "total_steps": 616, "loss": 2.3614, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.6772416726983343e-06, "epoch": 0.6168831168831169, "percentage": 15.42, "elapsed_time": "0:54:03", "remaining_time": "4:56:29"}
40
+ {"current_steps": 95, "total_steps": 616, "loss": null, "eval_loss": 2.366936683654785, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.6168831168831169, "percentage": 15.42, "elapsed_time": "0:54:03", "remaining_time": "4:56:29"}
41
+ {"current_steps": 100, "total_steps": 616, "loss": 2.3467, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.3141737794662055e-06, "epoch": 0.6493506493506493, "percentage": 16.23, "elapsed_time": "0:56:58", "remaining_time": "4:53:58"}
42
+ {"current_steps": 100, "total_steps": 616, "loss": null, "eval_loss": 2.361203193664551, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.6493506493506493, "percentage": 16.23, "elapsed_time": "0:56:58", "remaining_time": "4:53:58"}
43
+ {"current_steps": 105, "total_steps": 616, "loss": 2.4012, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.984449530286649e-06, "epoch": 0.6818181818181818, "percentage": 17.05, "elapsed_time": "0:59:52", "remaining_time": "4:51:25"}
44
+ {"current_steps": 105, "total_steps": 616, "loss": null, "eval_loss": 2.3568994998931885, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.6818181818181818, "percentage": 17.05, "elapsed_time": "0:59:52", "remaining_time": "4:51:25"}
45
+ {"current_steps": 110, "total_steps": 616, "loss": 2.3224, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.685287130987944e-06, "epoch": 0.7142857142857143, "percentage": 17.86, "elapsed_time": "1:02:47", "remaining_time": "4:48:49"}
46
+ {"current_steps": 110, "total_steps": 616, "loss": null, "eval_loss": 2.352806329727173, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.7142857142857143, "percentage": 17.86, "elapsed_time": "1:02:47", "remaining_time": "4:48:49"}
47
+ {"current_steps": 115, "total_steps": 616, "loss": 2.3348, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.4141130287548048e-06, "epoch": 0.7467532467532467, "percentage": 18.67, "elapsed_time": "1:05:42", "remaining_time": "4:46:13"}
48
+ {"current_steps": 115, "total_steps": 616, "loss": null, "eval_loss": 2.348268985748291, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.7467532467532467, "percentage": 18.67, "elapsed_time": "1:05:42", "remaining_time": "4:46:13"}
49
+ {"current_steps": 120, "total_steps": 616, "loss": 2.3573, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.168548141976706e-06, "epoch": 0.7792207792207793, "percentage": 19.48, "elapsed_time": "1:08:37", "remaining_time": "4:43:40"}
50
+ {"current_steps": 120, "total_steps": 616, "loss": null, "eval_loss": 2.3447518348693848, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.7792207792207793, "percentage": 19.48, "elapsed_time": "1:08:37", "remaining_time": "4:43:40"}
51
+ {"current_steps": 125, "total_steps": 616, "loss": 2.306, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.946394878094437e-06, "epoch": 0.8116883116883117, "percentage": 20.29, "elapsed_time": "1:11:31", "remaining_time": "4:40:57"}
52
+ {"current_steps": 125, "total_steps": 616, "loss": null, "eval_loss": 2.3411996364593506, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.8116883116883117, "percentage": 20.29, "elapsed_time": "1:11:31", "remaining_time": "4:40:57"}
53
+ {"current_steps": 130, "total_steps": 616, "loss": 2.342, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.745624901501792e-06, "epoch": 0.8441558441558441, "percentage": 21.1, "elapsed_time": "1:14:25", "remaining_time": "4:38:14"}
54
+ {"current_steps": 130, "total_steps": 616, "loss": null, "eval_loss": 2.338190793991089, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.8441558441558441, "percentage": 21.1, "elapsed_time": "1:14:25", "remaining_time": "4:38:14"}
55
+ {"current_steps": 135, "total_steps": 616, "loss": 2.3045, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.564367615035273e-06, "epoch": 0.8766233766233766, "percentage": 21.92, "elapsed_time": "1:17:19", "remaining_time": "4:35:29"}
56
+ {"current_steps": 135, "total_steps": 616, "loss": null, "eval_loss": 2.3356211185455322, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.8766233766233766, "percentage": 21.92, "elapsed_time": "1:17:19", "remaining_time": "4:35:29"}
57
+ {"current_steps": 140, "total_steps": 616, "loss": 2.2959, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4008993200171148e-06, "epoch": 0.9090909090909091, "percentage": 22.73, "elapsed_time": "1:20:12", "remaining_time": "4:32:43"}
58
+ {"current_steps": 140, "total_steps": 616, "loss": null, "eval_loss": 2.3329813480377197, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.9090909090909091, "percentage": 22.73, "elapsed_time": "1:20:12", "remaining_time": "4:32:43"}
59
+ {"current_steps": 145, "total_steps": 616, "loss": 2.3545, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.253633021206854e-06, "epoch": 0.9415584415584416, "percentage": 23.54, "elapsed_time": "1:23:08", "remaining_time": "4:30:03"}
60
+ {"current_steps": 145, "total_steps": 616, "loss": null, "eval_loss": 2.330482006072998, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.9415584415584416, "percentage": 23.54, "elapsed_time": "1:23:08", "remaining_time": "4:30:03"}
61
+ {"current_steps": 150, "total_steps": 616, "loss": 2.3446, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1211088443646446e-06, "epoch": 0.974025974025974, "percentage": 24.35, "elapsed_time": "1:26:03", "remaining_time": "4:27:21"}
62
+ {"current_steps": 150, "total_steps": 616, "loss": null, "eval_loss": 2.3284924030303955, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.974025974025974, "percentage": 24.35, "elapsed_time": "1:26:03", "remaining_time": "4:27:21"}
63
+ {"current_steps": 155, "total_steps": 616, "loss": 2.2502, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0019850354367667e-06, "epoch": 1.0064935064935066, "percentage": 25.16, "elapsed_time": "1:28:58", "remaining_time": "4:24:36"}
64
+ {"current_steps": 155, "total_steps": 616, "loss": null, "eval_loss": 2.326810598373413, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.0064935064935066, "percentage": 25.16, "elapsed_time": "1:28:58", "remaining_time": "4:24:36"}
65
+ {"current_steps": 160, "total_steps": 616, "loss": 2.0791, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.950295116407778e-07, "epoch": 1.0389610389610389, "percentage": 25.97, "elapsed_time": "1:31:51", "remaining_time": "4:21:48"}
66
+ {"current_steps": 160, "total_steps": 616, "loss": null, "eval_loss": 2.3346893787384033, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.0389610389610389, "percentage": 25.97, "elapsed_time": "1:31:51", "remaining_time": "4:21:48"}
67
+ {"current_steps": 165, "total_steps": 616, "loss": 2.1034, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.991119359555816e-07, "epoch": 1.0714285714285714, "percentage": 26.79, "elapsed_time": "1:34:45", "remaining_time": "4:18:59"}
68
+ {"current_steps": 165, "total_steps": 616, "loss": null, "eval_loss": 2.3399083614349365, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.0714285714285714, "percentage": 26.79, "elapsed_time": "1:34:45", "remaining_time": "4:18:59"}
69
+ {"current_steps": 170, "total_steps": 616, "loss": 2.095, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.131962877110503e-07, "epoch": 1.103896103896104, "percentage": 27.6, "elapsed_time": "1:37:38", "remaining_time": "4:16:11"}
70
+ {"current_steps": 170, "total_steps": 616, "loss": null, "eval_loss": 2.335786819458008, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.103896103896104, "percentage": 27.6, "elapsed_time": "1:37:38", "remaining_time": "4:16:11"}
71
+ {"current_steps": 175, "total_steps": 616, "loss": 2.0627, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.363339031235531e-07, "epoch": 1.1363636363636362, "percentage": 28.41, "elapsed_time": "1:40:33", "remaining_time": "4:13:23"}
72
+ {"current_steps": 175, "total_steps": 616, "loss": null, "eval_loss": 2.3346118927001953, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.1363636363636362, "percentage": 28.41, "elapsed_time": "1:40:33", "remaining_time": "4:13:23"}
73
+ {"current_steps": 180, "total_steps": 616, "loss": 2.0408, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.676569607386888e-07, "epoch": 1.1688311688311688, "percentage": 29.22, "elapsed_time": "1:43:26", "remaining_time": "4:10:33"}
74
+ {"current_steps": 180, "total_steps": 616, "loss": null, "eval_loss": 2.3357036113739014, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.1688311688311688, "percentage": 29.22, "elapsed_time": "1:43:26", "remaining_time": "4:10:33"}
75
+ {"current_steps": 185, "total_steps": 616, "loss": 2.0575, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.063723878213202e-07, "epoch": 1.2012987012987013, "percentage": 30.03, "elapsed_time": "1:46:19", "remaining_time": "4:07:43"}
76
+ {"current_steps": 185, "total_steps": 616, "loss": null, "eval_loss": 2.336442708969116, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.2012987012987013, "percentage": 30.03, "elapsed_time": "1:46:19", "remaining_time": "4:07:43"}
77
+ {"current_steps": 190, "total_steps": 616, "loss": 2.0976, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.5175616477672654e-07, "epoch": 1.2337662337662338, "percentage": 30.84, "elapsed_time": "1:49:14", "remaining_time": "4:04:55"}
78
+ {"current_steps": 190, "total_steps": 616, "loss": null, "eval_loss": 2.3349287509918213, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.2337662337662338, "percentage": 30.84, "elapsed_time": "1:49:14", "remaining_time": "4:04:55"}
79
+ {"current_steps": 195, "total_steps": 616, "loss": 2.0668, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.0314800569574653e-07, "epoch": 1.2662337662337662, "percentage": 31.66, "elapsed_time": "1:52:09", "remaining_time": "4:02:08"}
80
+ {"current_steps": 195, "total_steps": 616, "loss": null, "eval_loss": 2.3336005210876465, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.2662337662337662, "percentage": 31.66, "elapsed_time": "1:52:09", "remaining_time": "4:02:08"}
81
+ {"current_steps": 200, "total_steps": 616, "loss": 2.0579, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.5994639409229767e-07, "epoch": 1.2987012987012987, "percentage": 32.47, "elapsed_time": "1:55:02", "remaining_time": "3:59:17"}
82
+ {"current_steps": 200, "total_steps": 616, "loss": null, "eval_loss": 2.3329007625579834, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.2987012987012987, "percentage": 32.47, "elapsed_time": "1:55:02", "remaining_time": "3:59:17"}
83
+ {"current_steps": 205, "total_steps": 616, "loss": 2.0756, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.2160395384412303e-07, "epoch": 1.3311688311688312, "percentage": 33.28, "elapsed_time": "1:57:57", "remaining_time": "3:56:30"}
84
+ {"current_steps": 205, "total_steps": 616, "loss": null, "eval_loss": 2.332624912261963, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.3311688311688312, "percentage": 33.28, "elapsed_time": "1:57:57", "remaining_time": "3:56:30"}
85
+ {"current_steps": 210, "total_steps": 616, "loss": 2.1174, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.87623136257929e-07, "epoch": 1.3636363636363638, "percentage": 34.09, "elapsed_time": "2:00:50", "remaining_time": "3:53:38"}
86
+ {"current_steps": 210, "total_steps": 616, "loss": null, "eval_loss": 2.3325307369232178, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.3636363636363638, "percentage": 34.09, "elapsed_time": "2:00:50", "remaining_time": "3:53:38"}
87
+ {"current_steps": 215, "total_steps": 616, "loss": 2.0663, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.5755220505894177e-07, "epoch": 1.396103896103896, "percentage": 34.9, "elapsed_time": "2:03:44", "remaining_time": "3:50:48"}
88
+ {"current_steps": 215, "total_steps": 616, "loss": null, "eval_loss": 2.332547664642334, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.396103896103896, "percentage": 34.9, "elapsed_time": "2:03:44", "remaining_time": "3:50:48"}
89
+ {"current_steps": 220, "total_steps": 616, "loss": 2.0941, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3098150195300782e-07, "epoch": 1.4285714285714286, "percentage": 35.71, "elapsed_time": "2:06:39", "remaining_time": "3:47:58"}
90
+ {"current_steps": 220, "total_steps": 616, "loss": null, "eval_loss": 2.332444190979004, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.4285714285714286, "percentage": 35.71, "elapsed_time": "2:06:39", "remaining_time": "3:47:58"}
91
+ {"current_steps": 225, "total_steps": 616, "loss": 2.1074, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.075399762275433e-07, "epoch": 1.4610389610389611, "percentage": 36.53, "elapsed_time": "2:09:31", "remaining_time": "3:45:05"}
92
+ {"current_steps": 225, "total_steps": 616, "loss": null, "eval_loss": 2.332444667816162, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.4610389610389611, "percentage": 36.53, "elapsed_time": "2:09:31", "remaining_time": "3:45:05"}
93
+ {"current_steps": 230, "total_steps": 616, "loss": 2.1251, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.868919626464468e-07, "epoch": 1.4935064935064934, "percentage": 37.34, "elapsed_time": "2:12:23", "remaining_time": "3:42:11"}
94
+ {"current_steps": 230, "total_steps": 616, "loss": null, "eval_loss": 2.332214117050171, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.4935064935064934, "percentage": 37.34, "elapsed_time": "2:12:23", "remaining_time": "3:42:11"}
95
+ {"current_steps": 235, "total_steps": 616, "loss": 2.0629, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6873419265440147e-07, "epoch": 1.525974025974026, "percentage": 38.15, "elapsed_time": "2:15:17", "remaining_time": "3:39:21"}
96
+ {"current_steps": 235, "total_steps": 616, "loss": null, "eval_loss": 2.3318090438842773, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.525974025974026, "percentage": 38.15, "elapsed_time": "2:15:17", "remaining_time": "3:39:21"}
97
+ {"current_steps": 240, "total_steps": 616, "loss": 2.0872, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5279302463838363e-07, "epoch": 1.5584415584415585, "percentage": 38.96, "elapsed_time": "2:18:10", "remaining_time": "3:36:28"}
98
+ {"current_steps": 240, "total_steps": 616, "loss": null, "eval_loss": 2.331209659576416, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.5584415584415585, "percentage": 38.96, "elapsed_time": "2:18:10", "remaining_time": "3:36:28"}
99
+ {"current_steps": 245, "total_steps": 616, "loss": 2.0994, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3882187969941973e-07, "epoch": 1.5909090909090908, "percentage": 39.77, "elapsed_time": "2:21:03", "remaining_time": "3:33:35"}
100
+ {"current_steps": 245, "total_steps": 616, "loss": null, "eval_loss": 2.3310420513153076, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.5909090909090908, "percentage": 39.77, "elapsed_time": "2:21:03", "remaining_time": "3:33:35"}
101
+ {"current_steps": 250, "total_steps": 616, "loss": 2.0879, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2659887006635567e-07, "epoch": 1.6233766233766234, "percentage": 40.58, "elapsed_time": "2:23:57", "remaining_time": "3:30:44"}
102
+ {"current_steps": 250, "total_steps": 616, "loss": null, "eval_loss": 2.3307697772979736, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.6233766233766234, "percentage": 40.58, "elapsed_time": "2:23:57", "remaining_time": "3:30:44"}
103
+ {"current_steps": 255, "total_steps": 616, "loss": 2.0623, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.159246079362766e-07, "epoch": 1.655844155844156, "percentage": 41.4, "elapsed_time": "2:26:49", "remaining_time": "3:27:51"}
104
+ {"current_steps": 255, "total_steps": 616, "loss": null, "eval_loss": 2.3305325508117676, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.655844155844156, "percentage": 41.4, "elapsed_time": "2:26:49", "remaining_time": "3:27:51"}
105
+ {"current_steps": 260, "total_steps": 616, "loss": 2.1054, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.066201831539531e-07, "epoch": 1.6883116883116882, "percentage": 42.21, "elapsed_time": "2:29:42", "remaining_time": "3:24:58"}
106
+ {"current_steps": 260, "total_steps": 616, "loss": null, "eval_loss": 2.3303236961364746, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.6883116883116882, "percentage": 42.21, "elapsed_time": "2:29:42", "remaining_time": "3:24:58"}
107
+ {"current_steps": 265, "total_steps": 616, "loss": 2.0736, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.852529874587936e-08, "epoch": 1.7207792207792207, "percentage": 43.02, "elapsed_time": "2:32:35", "remaining_time": "3:22:07"}
108
+ {"current_steps": 265, "total_steps": 616, "loss": null, "eval_loss": 2.330125093460083, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.7207792207792207, "percentage": 43.02, "elapsed_time": "2:32:35", "remaining_time": "3:22:07"}
109
+ {"current_steps": 270, "total_steps": 616, "loss": 2.1146, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.149655390382344e-08, "epoch": 1.7532467532467533, "percentage": 43.83, "elapsed_time": "2:35:29", "remaining_time": "3:19:15"}
110
+ {"current_steps": 270, "total_steps": 616, "loss": null, "eval_loss": 2.330049514770508, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.7532467532467533, "percentage": 43.83, "elapsed_time": "2:35:29", "remaining_time": "3:19:15"}
111
+ {"current_steps": 275, "total_steps": 616, "loss": 2.0444, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.540586456892e-08, "epoch": 1.7857142857142856, "percentage": 44.64, "elapsed_time": "2:38:21", "remaining_time": "3:16:21"}
112
+ {"current_steps": 275, "total_steps": 616, "loss": null, "eval_loss": 2.330078125, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.7857142857142856, "percentage": 44.64, "elapsed_time": "2:38:21", "remaining_time": "3:16:21"}
113
+ {"current_steps": 280, "total_steps": 616, "loss": 2.0541, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.013901230085373e-08, "epoch": 1.8181818181818183, "percentage": 45.45, "elapsed_time": "2:41:14", "remaining_time": "3:13:29"}
114
+ {"current_steps": 280, "total_steps": 616, "loss": null, "eval_loss": 2.3301477432250977, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.8181818181818183, "percentage": 45.45, "elapsed_time": "2:41:14", "remaining_time": "3:13:29"}
115
+ {"current_steps": 285, "total_steps": 616, "loss": 2.1333, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.55943126282245e-08, "epoch": 1.8506493506493507, "percentage": 46.27, "elapsed_time": "2:44:08", "remaining_time": "3:10:37"}
116
+ {"current_steps": 285, "total_steps": 616, "loss": null, "eval_loss": 2.3300485610961914, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.8506493506493507, "percentage": 46.27, "elapsed_time": "2:44:08", "remaining_time": "3:10:37"}
117
+ {"current_steps": 290, "total_steps": 616, "loss": 2.1101, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.168139456635546e-08, "epoch": 1.883116883116883, "percentage": 47.08, "elapsed_time": "2:47:01", "remaining_time": "3:07:45"}
118
+ {"current_steps": 290, "total_steps": 616, "loss": null, "eval_loss": 2.3298966884613037, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.883116883116883, "percentage": 47.08, "elapsed_time": "2:47:01", "remaining_time": "3:07:45"}
119
+ {"current_steps": 295, "total_steps": 616, "loss": 2.0234, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.832008345822561e-08, "epoch": 1.9155844155844157, "percentage": 47.89, "elapsed_time": "2:49:55", "remaining_time": "3:04:54"}
120
+ {"current_steps": 295, "total_steps": 616, "loss": null, "eval_loss": 2.3297622203826904, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.9155844155844157, "percentage": 47.89, "elapsed_time": "2:49:55", "remaining_time": "3:04:54"}
121
+ {"current_steps": 300, "total_steps": 616, "loss": 2.0671, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.543937974344862e-08, "epoch": 1.948051948051948, "percentage": 48.7, "elapsed_time": "2:52:48", "remaining_time": "3:02:01"}
122
+ {"current_steps": 300, "total_steps": 616, "loss": null, "eval_loss": 2.3298168182373047, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.948051948051948, "percentage": 48.7, "elapsed_time": "2:52:48", "remaining_time": "3:02:01"}
123
+ {"current_steps": 305, "total_steps": 616, "loss": 2.083, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.297652668988982e-08, "epoch": 1.9805194805194806, "percentage": 49.51, "elapsed_time": "2:55:41", "remaining_time": "2:59:08"}
124
+ {"current_steps": 305, "total_steps": 616, "loss": null, "eval_loss": 2.329840660095215, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.9805194805194806, "percentage": 49.51, "elapsed_time": "2:55:41", "remaining_time": "2:59:08"}
125
+ {"current_steps": 310, "total_steps": 616, "loss": 2.0417, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.087616053317391e-08, "epoch": 2.012987012987013, "percentage": 50.32, "elapsed_time": "2:58:34", "remaining_time": "2:56:15"}
126
+ {"current_steps": 310, "total_steps": 616, "loss": null, "eval_loss": 2.329859972000122, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.012987012987013, "percentage": 50.32, "elapsed_time": "2:58:34", "remaining_time": "2:56:15"}
127
+ {"current_steps": 315, "total_steps": 616, "loss": 2.0784, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.908953686156436e-08, "epoch": 2.0454545454545454, "percentage": 51.14, "elapsed_time": "3:01:27", "remaining_time": "2:53:24"}
128
+ {"current_steps": 315, "total_steps": 616, "loss": null, "eval_loss": 2.330275297164917, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.0454545454545454, "percentage": 51.14, "elapsed_time": "3:01:27", "remaining_time": "2:53:24"}
129
+ {"current_steps": 320, "total_steps": 616, "loss": 2.058, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.757382745804978e-08, "epoch": 2.0779220779220777, "percentage": 51.95, "elapsed_time": "3:04:19", "remaining_time": "2:50:30"}
130
+ {"current_steps": 320, "total_steps": 616, "loss": null, "eval_loss": 2.3307604789733887, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.0779220779220777, "percentage": 51.95, "elapsed_time": "3:04:19", "remaining_time": "2:50:30"}
131
+ {"current_steps": 325, "total_steps": 616, "loss": 2.0524, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.629148216850244e-08, "epoch": 2.1103896103896105, "percentage": 52.76, "elapsed_time": "3:07:13", "remaining_time": "2:47:38"}
132
+ {"current_steps": 325, "total_steps": 616, "loss": null, "eval_loss": 2.3312222957611084, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.1103896103896105, "percentage": 52.76, "elapsed_time": "3:07:13", "remaining_time": "2:47:38"}
133
+ {"current_steps": 330, "total_steps": 616, "loss": 2.0318, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.5209650705026766e-08, "epoch": 2.142857142857143, "percentage": 53.57, "elapsed_time": "3:10:06", "remaining_time": "2:44:45"}
134
+ {"current_steps": 330, "total_steps": 616, "loss": null, "eval_loss": 2.3315961360931396, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.142857142857143, "percentage": 53.57, "elapsed_time": "3:10:06", "remaining_time": "2:44:45"}
135
+ {"current_steps": 335, "total_steps": 616, "loss": 2.0914, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.429965961761988e-08, "epoch": 2.175324675324675, "percentage": 54.38, "elapsed_time": "3:13:00", "remaining_time": "2:41:53"}
136
+ {"current_steps": 335, "total_steps": 616, "loss": null, "eval_loss": 2.3318288326263428, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.175324675324675, "percentage": 54.38, "elapsed_time": "3:13:00", "remaining_time": "2:41:53"}
137
+ {"current_steps": 340, "total_steps": 616, "loss": 2.0319, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.353653997555268e-08, "epoch": 2.207792207792208, "percentage": 55.19, "elapsed_time": "3:15:53", "remaining_time": "2:39:00"}
138
+ {"current_steps": 340, "total_steps": 616, "loss": null, "eval_loss": 2.3320202827453613, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.207792207792208, "percentage": 55.19, "elapsed_time": "3:15:53", "remaining_time": "2:39:00"}
139
+ {"current_steps": 345, "total_steps": 616, "loss": 2.0099, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.289860159296223e-08, "epoch": 2.24025974025974, "percentage": 56.01, "elapsed_time": "3:18:45", "remaining_time": "2:36:07"}
140
+ {"current_steps": 345, "total_steps": 616, "loss": null, "eval_loss": 2.3321921825408936, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.24025974025974, "percentage": 56.01, "elapsed_time": "3:18:45", "remaining_time": "2:36:07"}
141
+ {"current_steps": 350, "total_steps": 616, "loss": 2.075, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.236704991153409e-08, "epoch": 2.2727272727272725, "percentage": 56.82, "elapsed_time": "3:21:36", "remaining_time": "2:33:13"}
142
+ {"current_steps": 350, "total_steps": 616, "loss": null, "eval_loss": 2.3322551250457764, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.2727272727272725, "percentage": 56.82, "elapsed_time": "3:21:36", "remaining_time": "2:33:13"}
143
+ {"current_steps": 355, "total_steps": 616, "loss": 2.0444, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.192564191734593e-08, "epoch": 2.3051948051948052, "percentage": 57.63, "elapsed_time": "3:24:31", "remaining_time": "2:30:21"}
144
+ {"current_steps": 355, "total_steps": 616, "loss": null, "eval_loss": 2.3323724269866943, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.3051948051948052, "percentage": 57.63, "elapsed_time": "3:24:31", "remaining_time": "2:30:21"}
145
+ {"current_steps": 360, "total_steps": 616, "loss": 2.0428, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.1560377719433e-08, "epoch": 2.3376623376623376, "percentage": 58.44, "elapsed_time": "3:27:24", "remaining_time": "2:27:29"}
146
+ {"current_steps": 360, "total_steps": 616, "loss": null, "eval_loss": 2.332462787628174, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.3376623376623376, "percentage": 58.44, "elapsed_time": "3:27:24", "remaining_time": "2:27:29"}
147
+ {"current_steps": 365, "total_steps": 616, "loss": 2.0612, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.12592246549025e-08, "epoch": 2.3701298701298703, "percentage": 59.25, "elapsed_time": "3:30:17", "remaining_time": "2:24:36"}
148
+ {"current_steps": 365, "total_steps": 616, "loss": null, "eval_loss": 2.3325576782226562, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.3701298701298703, "percentage": 59.25, "elapsed_time": "3:30:17", "remaining_time": "2:24:36"}
149
+ {"current_steps": 370, "total_steps": 616, "loss": 2.1078, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.101187100994392e-08, "epoch": 2.4025974025974026, "percentage": 60.06, "elapsed_time": "3:33:11", "remaining_time": "2:21:44"}
150
+ {"current_steps": 370, "total_steps": 616, "loss": null, "eval_loss": 2.3326776027679443, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.4025974025974026, "percentage": 60.06, "elapsed_time": "3:33:11", "remaining_time": "2:21:44"}
151
+ {"current_steps": 375, "total_steps": 616, "loss": 2.0643, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.0809506658318405e-08, "epoch": 2.435064935064935, "percentage": 60.88, "elapsed_time": "3:36:04", "remaining_time": "2:18:51"}
152
+ {"current_steps": 375, "total_steps": 616, "loss": null, "eval_loss": 2.332730531692505, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.435064935064935, "percentage": 60.88, "elapsed_time": "3:36:04", "remaining_time": "2:18:51"}
153
+ {"current_steps": 380, "total_steps": 616, "loss": 2.0667, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.06446281193206e-08, "epoch": 2.4675324675324677, "percentage": 61.69, "elapsed_time": "3:38:56", "remaining_time": "2:15:58"}
154
+ {"current_steps": 380, "total_steps": 616, "loss": null, "eval_loss": 2.3326008319854736, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.4675324675324677, "percentage": 61.69, "elapsed_time": "3:38:56", "remaining_time": "2:15:58"}
155
+ {"current_steps": 385, "total_steps": 616, "loss": 2.0285, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.051086572623794e-08, "epoch": 2.5, "percentage": 62.5, "elapsed_time": "3:41:49", "remaining_time": "2:13:05"}
156
+ {"current_steps": 385, "total_steps": 616, "loss": null, "eval_loss": 2.3324227333068848, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.5, "percentage": 62.5, "elapsed_time": "3:41:49", "remaining_time": "2:13:05"}
157
+ {"current_steps": 390, "total_steps": 616, "loss": 2.0571, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.040283077442462e-08, "epoch": 2.5324675324675323, "percentage": 63.31, "elapsed_time": "3:44:41", "remaining_time": "2:10:12"}
158
+ {"current_steps": 390, "total_steps": 616, "loss": null, "eval_loss": 2.332240343093872, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.5324675324675323, "percentage": 63.31, "elapsed_time": "3:44:41", "remaining_time": "2:10:12"}
159
+ {"current_steps": 395, "total_steps": 616, "loss": 2.0209, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.0315980685690885e-08, "epoch": 2.564935064935065, "percentage": 64.12, "elapsed_time": "3:47:33", "remaining_time": "2:07:19"}
160
+ {"current_steps": 395, "total_steps": 616, "loss": null, "eval_loss": 2.332184076309204, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.564935064935065, "percentage": 64.12, "elapsed_time": "3:47:33", "remaining_time": "2:07:19"}
161
+ {"current_steps": 400, "total_steps": 616, "loss": 2.0537, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.024650038320448e-08, "epoch": 2.5974025974025974, "percentage": 64.94, "elapsed_time": "3:50:26", "remaining_time": "2:04:26"}
162
+ {"current_steps": 400, "total_steps": 616, "loss": null, "eval_loss": 2.3322784900665283, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.5974025974025974, "percentage": 64.94, "elapsed_time": "3:50:26", "remaining_time": "2:04:26"}
163
+ {"current_steps": 405, "total_steps": 616, "loss": 2.0138, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.019119821892392e-08, "epoch": 2.62987012987013, "percentage": 65.75, "elapsed_time": "3:53:17", "remaining_time": "2:01:32"}
164
+ {"current_steps": 405, "total_steps": 616, "loss": null, "eval_loss": 2.3324267864227295, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.62987012987013, "percentage": 65.75, "elapsed_time": "3:53:17", "remaining_time": "2:01:32"}
165
+ {"current_steps": 410, "total_steps": 616, "loss": 2.0772, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.0147414934136414e-08, "epoch": 2.6623376623376624, "percentage": 66.56, "elapsed_time": "3:56:07", "remaining_time": "1:58:38"}
166
+ {"current_steps": 410, "total_steps": 616, "loss": null, "eval_loss": 2.33242130279541, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.6623376623376624, "percentage": 66.56, "elapsed_time": "3:56:07", "remaining_time": "1:58:38"}
167
+ {"current_steps": 415, "total_steps": 616, "loss": 2.039, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.011294426335357e-08, "epoch": 2.6948051948051948, "percentage": 67.37, "elapsed_time": "3:58:59", "remaining_time": "1:55:45"}
168
+ {"current_steps": 415, "total_steps": 616, "loss": null, "eval_loss": 2.332331895828247, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.6948051948051948, "percentage": 67.37, "elapsed_time": "3:58:59", "remaining_time": "1:55:45"}
169
+ {"current_steps": 420, "total_steps": 616, "loss": 2.0181, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.008596391301209e-08, "epoch": 2.7272727272727275, "percentage": 68.18, "elapsed_time": "4:01:51", "remaining_time": "1:52:52"}
170
+ {"current_steps": 420, "total_steps": 616, "loss": null, "eval_loss": 2.3321642875671387, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.7272727272727275, "percentage": 68.18, "elapsed_time": "4:01:51", "remaining_time": "1:52:52"}
171
+ {"current_steps": 425, "total_steps": 616, "loss": 2.0484, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.006497575951353e-08, "epoch": 2.75974025974026, "percentage": 68.99, "elapsed_time": "4:04:43", "remaining_time": "1:49:59"}
172
+ {"current_steps": 425, "total_steps": 616, "loss": null, "eval_loss": 2.3319947719573975, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.75974025974026, "percentage": 68.99, "elapsed_time": "4:04:43", "remaining_time": "1:49:59"}
173
+ {"current_steps": 430, "total_steps": 616, "loss": 2.0224, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.004875421648668e-08, "epoch": 2.792207792207792, "percentage": 69.81, "elapsed_time": "4:07:35", "remaining_time": "1:47:05"}
174
+ {"current_steps": 430, "total_steps": 616, "loss": null, "eval_loss": 2.3319504261016846, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.792207792207792, "percentage": 69.81, "elapsed_time": "4:07:35", "remaining_time": "1:47:05"}
175
+ {"current_steps": 435, "total_steps": 616, "loss": 2.0732, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.0036301819129696e-08, "epoch": 2.824675324675325, "percentage": 70.62, "elapsed_time": "4:10:27", "remaining_time": "1:44:12"}
176
+ {"current_steps": 435, "total_steps": 616, "loss": null, "eval_loss": 2.332017421722412, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.824675324675325, "percentage": 70.62, "elapsed_time": "4:10:27", "remaining_time": "1:44:12"}
177
+ {"current_steps": 440, "total_steps": 616, "loss": 2.0499, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.002681116443942e-08, "epoch": 2.857142857142857, "percentage": 71.43, "elapsed_time": "4:13:17", "remaining_time": "1:41:19"}
178
+ {"current_steps": 440, "total_steps": 616, "loss": null, "eval_loss": 2.3320865631103516, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.857142857142857, "percentage": 71.43, "elapsed_time": "4:13:17", "remaining_time": "1:41:19"}
179
+ {"current_steps": 445, "total_steps": 616, "loss": 2.0498, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.001963243040635e-08, "epoch": 2.8896103896103895, "percentage": 72.24, "elapsed_time": "4:16:10", "remaining_time": "1:38:26"}
180
+ {"current_steps": 445, "total_steps": 616, "loss": null, "eval_loss": 2.332113742828369, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.8896103896103895, "percentage": 72.24, "elapsed_time": "4:16:10", "remaining_time": "1:38:26"}
181
+ {"current_steps": 450, "total_steps": 616, "loss": 2.0472, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.0014245775181084e-08, "epoch": 2.9220779220779223, "percentage": 73.05, "elapsed_time": "4:19:01", "remaining_time": "1:35:33"}
182
+ {"current_steps": 450, "total_steps": 616, "loss": null, "eval_loss": 2.33201003074646, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.9220779220779223, "percentage": 73.05, "elapsed_time": "4:19:01", "remaining_time": "1:35:33"}
183
+ {"current_steps": 455, "total_steps": 616, "loss": 2.1327, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.0010237989128404e-08, "epoch": 2.9545454545454546, "percentage": 73.86, "elapsed_time": "4:21:53", "remaining_time": "1:32:40"}
184
+ {"current_steps": 455, "total_steps": 616, "loss": null, "eval_loss": 2.3319180011749268, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.9545454545454546, "percentage": 73.86, "elapsed_time": "4:21:53", "remaining_time": "1:32:40"}
185
+ {"current_steps": 460, "total_steps": 616, "loss": 2.0642, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.00072828388965e-08, "epoch": 2.987012987012987, "percentage": 74.68, "elapsed_time": "4:24:43", "remaining_time": "1:29:46"}
186
+ {"current_steps": 460, "total_steps": 616, "loss": null, "eval_loss": 2.3318610191345215, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.987012987012987, "percentage": 74.68, "elapsed_time": "4:24:43", "remaining_time": "1:29:46"}
187
+ {"current_steps": 465, "total_steps": 616, "loss": 2.0654, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.000512460345108e-08, "epoch": 3.0194805194805197, "percentage": 75.49, "elapsed_time": "4:27:33", "remaining_time": "1:26:53"}
trainer_state.json ADDED
@@ -0,0 +1,501 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 2.326810598373413,
3
+ "best_model_checkpoint": "./output/training_results/C015_llama3-8b-base_pretrain_20240428_005832/checkpoint-155",
4
+ "epoch": 1.0064935064935066,
5
+ "eval_steps": 5,
6
+ "global_step": 155,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.006493506493506494,
13
+ "grad_norm": 0.0,
14
+ "learning_rate": 0.0,
15
+ "loss": 2.6141,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.006493506493506494,
20
+ "eval_loss": 2.635435104370117,
21
+ "eval_runtime": 13.3872,
22
+ "eval_samples_per_second": 81.421,
23
+ "eval_steps_per_second": 0.672,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.032467532467532464,
28
+ "grad_norm": 3.736102227472634,
29
+ "learning_rate": 2.25e-06,
30
+ "loss": 2.657,
31
+ "step": 5
32
+ },
33
+ {
34
+ "epoch": 0.032467532467532464,
35
+ "eval_loss": 2.6205813884735107,
36
+ "eval_runtime": 13.3001,
37
+ "eval_samples_per_second": 81.955,
38
+ "eval_steps_per_second": 0.677,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.06493506493506493,
43
+ "grad_norm": 2.9360680843951172,
44
+ "learning_rate": 5.25e-06,
45
+ "loss": 2.6337,
46
+ "step": 10
47
+ },
48
+ {
49
+ "epoch": 0.06493506493506493,
50
+ "eval_loss": 2.5846035480499268,
51
+ "eval_runtime": 13.3634,
52
+ "eval_samples_per_second": 81.566,
53
+ "eval_steps_per_second": 0.673,
54
+ "step": 10
55
+ },
56
+ {
57
+ "epoch": 0.09740259740259741,
58
+ "grad_norm": 2.4441290480949354,
59
+ "learning_rate": 9e-06,
60
+ "loss": 2.5268,
61
+ "step": 15
62
+ },
63
+ {
64
+ "epoch": 0.09740259740259741,
65
+ "eval_loss": 2.5515594482421875,
66
+ "eval_runtime": 13.3452,
67
+ "eval_samples_per_second": 81.677,
68
+ "eval_steps_per_second": 0.674,
69
+ "step": 15
70
+ },
71
+ {
72
+ "epoch": 0.12987012987012986,
73
+ "grad_norm": 2.5052749297132455,
74
+ "learning_rate": 1.275e-05,
75
+ "loss": 2.5275,
76
+ "step": 20
77
+ },
78
+ {
79
+ "epoch": 0.12987012987012986,
80
+ "eval_loss": 2.5321404933929443,
81
+ "eval_runtime": 13.3665,
82
+ "eval_samples_per_second": 81.547,
83
+ "eval_steps_per_second": 0.673,
84
+ "step": 20
85
+ },
86
+ {
87
+ "epoch": 0.16233766233766234,
88
+ "grad_norm": 2.570439112365278,
89
+ "learning_rate": 1.4457320927100615e-05,
90
+ "loss": 2.5005,
91
+ "step": 25
92
+ },
93
+ {
94
+ "epoch": 0.16233766233766234,
95
+ "eval_loss": 2.513052225112915,
96
+ "eval_runtime": 13.3936,
97
+ "eval_samples_per_second": 81.382,
98
+ "eval_steps_per_second": 0.672,
99
+ "step": 25
100
+ },
101
+ {
102
+ "epoch": 0.19480519480519481,
103
+ "grad_norm": 2.1653661003420974,
104
+ "learning_rate": 1.3178060763055965e-05,
105
+ "loss": 2.5339,
106
+ "step": 30
107
+ },
108
+ {
109
+ "epoch": 0.19480519480519481,
110
+ "eval_loss": 2.496060609817505,
111
+ "eval_runtime": 13.4225,
112
+ "eval_samples_per_second": 81.207,
113
+ "eval_steps_per_second": 0.671,
114
+ "step": 30
115
+ },
116
+ {
117
+ "epoch": 0.22727272727272727,
118
+ "grad_norm": 2.4298156508230955,
119
+ "learning_rate": 1.200291011775234e-05,
120
+ "loss": 2.5335,
121
+ "step": 35
122
+ },
123
+ {
124
+ "epoch": 0.22727272727272727,
125
+ "eval_loss": 2.4807701110839844,
126
+ "eval_runtime": 13.3964,
127
+ "eval_samples_per_second": 81.365,
128
+ "eval_steps_per_second": 0.672,
129
+ "step": 35
130
+ },
131
+ {
132
+ "epoch": 0.2597402597402597,
133
+ "grad_norm": 2.371474812035467,
134
+ "learning_rate": 1.092418047398154e-05,
135
+ "loss": 2.4252,
136
+ "step": 40
137
+ },
138
+ {
139
+ "epoch": 0.2597402597402597,
140
+ "eval_loss": 2.464339256286621,
141
+ "eval_runtime": 13.3751,
142
+ "eval_samples_per_second": 81.495,
143
+ "eval_steps_per_second": 0.673,
144
+ "step": 40
145
+ },
146
+ {
147
+ "epoch": 0.2922077922077922,
148
+ "grad_norm": 2.233872363768768,
149
+ "learning_rate": 9.934692235419926e-06,
150
+ "loss": 2.4445,
151
+ "step": 45
152
+ },
153
+ {
154
+ "epoch": 0.2922077922077922,
155
+ "eval_loss": 2.4518375396728516,
156
+ "eval_runtime": 13.4165,
157
+ "eval_samples_per_second": 81.243,
158
+ "eval_steps_per_second": 0.671,
159
+ "step": 45
160
+ },
161
+ {
162
+ "epoch": 0.3246753246753247,
163
+ "grad_norm": 2.228351075418733,
164
+ "learning_rate": 9.02774500281382e-06,
165
+ "loss": 2.4594,
166
+ "step": 50
167
+ },
168
+ {
169
+ "epoch": 0.3246753246753247,
170
+ "eval_loss": 2.4393582344055176,
171
+ "eval_runtime": 13.3552,
172
+ "eval_samples_per_second": 81.616,
173
+ "eval_steps_per_second": 0.674,
174
+ "step": 50
175
+ },
176
+ {
177
+ "epoch": 0.35714285714285715,
178
+ "grad_norm": 2.2182357621988693,
179
+ "learning_rate": 8.197089350822288e-06,
180
+ "loss": 2.4498,
181
+ "step": 55
182
+ },
183
+ {
184
+ "epoch": 0.35714285714285715,
185
+ "eval_loss": 2.4287211894989014,
186
+ "eval_runtime": 13.3236,
187
+ "eval_samples_per_second": 81.809,
188
+ "eval_steps_per_second": 0.675,
189
+ "step": 55
190
+ },
191
+ {
192
+ "epoch": 0.38961038961038963,
193
+ "grad_norm": 2.3864673038770854,
194
+ "learning_rate": 7.436900041840997e-06,
195
+ "loss": 2.3821,
196
+ "step": 60
197
+ },
198
+ {
199
+ "epoch": 0.38961038961038963,
200
+ "eval_loss": 2.4184141159057617,
201
+ "eval_runtime": 13.3882,
202
+ "eval_samples_per_second": 81.415,
203
+ "eval_steps_per_second": 0.672,
204
+ "step": 60
205
+ },
206
+ {
207
+ "epoch": 0.42207792207792205,
208
+ "grad_norm": 1.9510161344368442,
209
+ "learning_rate": 6.741750615310939e-06,
210
+ "loss": 2.4317,
211
+ "step": 65
212
+ },
213
+ {
214
+ "epoch": 0.42207792207792205,
215
+ "eval_loss": 2.4091267585754395,
216
+ "eval_runtime": 13.358,
217
+ "eval_samples_per_second": 81.599,
218
+ "eval_steps_per_second": 0.674,
219
+ "step": 65
220
+ },
221
+ {
222
+ "epoch": 0.45454545454545453,
223
+ "grad_norm": 1.9482390057148204,
224
+ "learning_rate": 6.106589293139538e-06,
225
+ "loss": 2.3931,
226
+ "step": 70
227
+ },
228
+ {
229
+ "epoch": 0.45454545454545453,
230
+ "eval_loss": 2.40012788772583,
231
+ "eval_runtime": 13.4261,
232
+ "eval_samples_per_second": 81.185,
233
+ "eval_steps_per_second": 0.67,
234
+ "step": 70
235
+ },
236
+ {
237
+ "epoch": 0.487012987012987,
238
+ "grad_norm": 2.112671713085814,
239
+ "learning_rate": 5.526716143930102e-06,
240
+ "loss": 2.3695,
241
+ "step": 75
242
+ },
243
+ {
244
+ "epoch": 0.487012987012987,
245
+ "eval_loss": 2.3934359550476074,
246
+ "eval_runtime": 13.3826,
247
+ "eval_samples_per_second": 81.449,
248
+ "eval_steps_per_second": 0.673,
249
+ "step": 75
250
+ },
251
+ {
252
+ "epoch": 0.5194805194805194,
253
+ "grad_norm": 2.0831282196798315,
254
+ "learning_rate": 4.997761450728939e-06,
255
+ "loss": 2.3981,
256
+ "step": 80
257
+ },
258
+ {
259
+ "epoch": 0.5194805194805194,
260
+ "eval_loss": 2.3855459690093994,
261
+ "eval_runtime": 13.4481,
262
+ "eval_samples_per_second": 81.052,
263
+ "eval_steps_per_second": 0.669,
264
+ "step": 80
265
+ },
266
+ {
267
+ "epoch": 0.551948051948052,
268
+ "grad_norm": 1.850619691727126,
269
+ "learning_rate": 4.515665228960038e-06,
270
+ "loss": 2.3952,
271
+ "step": 85
272
+ },
273
+ {
274
+ "epoch": 0.551948051948052,
275
+ "eval_loss": 2.37890887260437,
276
+ "eval_runtime": 13.4148,
277
+ "eval_samples_per_second": 81.254,
278
+ "eval_steps_per_second": 0.671,
279
+ "step": 85
280
+ },
281
+ {
282
+ "epoch": 0.5844155844155844,
283
+ "grad_norm": 1.92650957243675,
284
+ "learning_rate": 4.0766578431245434e-06,
285
+ "loss": 2.4137,
286
+ "step": 90
287
+ },
288
+ {
289
+ "epoch": 0.5844155844155844,
290
+ "eval_loss": 2.3720638751983643,
291
+ "eval_runtime": 13.3735,
292
+ "eval_samples_per_second": 81.504,
293
+ "eval_steps_per_second": 0.673,
294
+ "step": 90
295
+ },
296
+ {
297
+ "epoch": 0.6168831168831169,
298
+ "grad_norm": 1.9166696037048836,
299
+ "learning_rate": 3.6772416726983343e-06,
300
+ "loss": 2.3614,
301
+ "step": 95
302
+ },
303
+ {
304
+ "epoch": 0.6168831168831169,
305
+ "eval_loss": 2.366936683654785,
306
+ "eval_runtime": 13.4784,
307
+ "eval_samples_per_second": 80.87,
308
+ "eval_steps_per_second": 0.668,
309
+ "step": 95
310
+ },
311
+ {
312
+ "epoch": 0.6493506493506493,
313
+ "grad_norm": 1.9337017607143168,
314
+ "learning_rate": 3.3141737794662055e-06,
315
+ "loss": 2.3467,
316
+ "step": 100
317
+ },
318
+ {
319
+ "epoch": 0.6493506493506493,
320
+ "eval_loss": 2.361203193664551,
321
+ "eval_runtime": 13.4232,
322
+ "eval_samples_per_second": 81.203,
323
+ "eval_steps_per_second": 0.67,
324
+ "step": 100
325
+ },
326
+ {
327
+ "epoch": 0.6818181818181818,
328
+ "grad_norm": 1.800114241259619,
329
+ "learning_rate": 2.984449530286649e-06,
330
+ "loss": 2.4012,
331
+ "step": 105
332
+ },
333
+ {
334
+ "epoch": 0.6818181818181818,
335
+ "eval_loss": 2.3568994998931885,
336
+ "eval_runtime": 13.3387,
337
+ "eval_samples_per_second": 81.717,
338
+ "eval_steps_per_second": 0.675,
339
+ "step": 105
340
+ },
341
+ {
342
+ "epoch": 0.7142857142857143,
343
+ "grad_norm": 1.8774879479561137,
344
+ "learning_rate": 2.685287130987944e-06,
345
+ "loss": 2.3224,
346
+ "step": 110
347
+ },
348
+ {
349
+ "epoch": 0.7142857142857143,
350
+ "eval_loss": 2.352806329727173,
351
+ "eval_runtime": 13.3565,
352
+ "eval_samples_per_second": 81.608,
353
+ "eval_steps_per_second": 0.674,
354
+ "step": 110
355
+ },
356
+ {
357
+ "epoch": 0.7467532467532467,
358
+ "grad_norm": 1.8730632952307495,
359
+ "learning_rate": 2.4141130287548048e-06,
360
+ "loss": 2.3348,
361
+ "step": 115
362
+ },
363
+ {
364
+ "epoch": 0.7467532467532467,
365
+ "eval_loss": 2.348268985748291,
366
+ "eval_runtime": 13.3814,
367
+ "eval_samples_per_second": 81.456,
368
+ "eval_steps_per_second": 0.673,
369
+ "step": 115
370
+ },
371
+ {
372
+ "epoch": 0.7792207792207793,
373
+ "grad_norm": 1.9700141360167842,
374
+ "learning_rate": 2.168548141976706e-06,
375
+ "loss": 2.3573,
376
+ "step": 120
377
+ },
378
+ {
379
+ "epoch": 0.7792207792207793,
380
+ "eval_loss": 2.3447518348693848,
381
+ "eval_runtime": 13.3872,
382
+ "eval_samples_per_second": 81.421,
383
+ "eval_steps_per_second": 0.672,
384
+ "step": 120
385
+ },
386
+ {
387
+ "epoch": 0.8116883116883117,
388
+ "grad_norm": 1.8580210267921047,
389
+ "learning_rate": 1.946394878094437e-06,
390
+ "loss": 2.306,
391
+ "step": 125
392
+ },
393
+ {
394
+ "epoch": 0.8116883116883117,
395
+ "eval_loss": 2.3411996364593506,
396
+ "eval_runtime": 13.4315,
397
+ "eval_samples_per_second": 81.153,
398
+ "eval_steps_per_second": 0.67,
399
+ "step": 125
400
+ },
401
+ {
402
+ "epoch": 0.8441558441558441,
403
+ "grad_norm": 1.8818877549057513,
404
+ "learning_rate": 1.745624901501792e-06,
405
+ "loss": 2.342,
406
+ "step": 130
407
+ },
408
+ {
409
+ "epoch": 0.8441558441558441,
410
+ "eval_loss": 2.338190793991089,
411
+ "eval_runtime": 13.3467,
412
+ "eval_samples_per_second": 81.668,
413
+ "eval_steps_per_second": 0.674,
414
+ "step": 130
415
+ },
416
+ {
417
+ "epoch": 0.8766233766233766,
418
+ "grad_norm": 1.9087045844270383,
419
+ "learning_rate": 1.564367615035273e-06,
420
+ "loss": 2.3045,
421
+ "step": 135
422
+ },
423
+ {
424
+ "epoch": 0.8766233766233766,
425
+ "eval_loss": 2.3356211185455322,
426
+ "eval_runtime": 13.3981,
427
+ "eval_samples_per_second": 81.355,
428
+ "eval_steps_per_second": 0.672,
429
+ "step": 135
430
+ },
431
+ {
432
+ "epoch": 0.9090909090909091,
433
+ "grad_norm": 1.8238462929669437,
434
+ "learning_rate": 1.4008993200171148e-06,
435
+ "loss": 2.2959,
436
+ "step": 140
437
+ },
438
+ {
439
+ "epoch": 0.9090909090909091,
440
+ "eval_loss": 2.3329813480377197,
441
+ "eval_runtime": 13.4034,
442
+ "eval_samples_per_second": 81.322,
443
+ "eval_steps_per_second": 0.671,
444
+ "step": 140
445
+ },
446
+ {
447
+ "epoch": 0.9415584415584416,
448
+ "grad_norm": 1.824603087231258,
449
+ "learning_rate": 1.253633021206854e-06,
450
+ "loss": 2.3545,
451
+ "step": 145
452
+ },
453
+ {
454
+ "epoch": 0.9415584415584416,
455
+ "eval_loss": 2.330482006072998,
456
+ "eval_runtime": 13.3871,
457
+ "eval_samples_per_second": 81.422,
458
+ "eval_steps_per_second": 0.672,
459
+ "step": 145
460
+ },
461
+ {
462
+ "epoch": 0.974025974025974,
463
+ "grad_norm": 1.7913666925001428,
464
+ "learning_rate": 1.1211088443646446e-06,
465
+ "loss": 2.3446,
466
+ "step": 150
467
+ },
468
+ {
469
+ "epoch": 0.974025974025974,
470
+ "eval_loss": 2.3284924030303955,
471
+ "eval_runtime": 13.3985,
472
+ "eval_samples_per_second": 81.353,
473
+ "eval_steps_per_second": 0.672,
474
+ "step": 150
475
+ },
476
+ {
477
+ "epoch": 1.0064935064935066,
478
+ "grad_norm": 3.0555751125596067,
479
+ "learning_rate": 1.0019850354367667e-06,
480
+ "loss": 2.2502,
481
+ "step": 155
482
+ },
483
+ {
484
+ "epoch": 1.0064935064935066,
485
+ "eval_loss": 2.326810598373413,
486
+ "eval_runtime": 13.3767,
487
+ "eval_samples_per_second": 81.485,
488
+ "eval_steps_per_second": 0.673,
489
+ "step": 155
490
+ }
491
+ ],
492
+ "logging_steps": 5,
493
+ "max_steps": 616,
494
+ "num_input_tokens_seen": 0,
495
+ "num_train_epochs": 4,
496
+ "save_steps": 5,
497
+ "total_flos": 15912853831680.0,
498
+ "train_batch_size": 8,
499
+ "trial_name": null,
500
+ "trial_params": null
501
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e42b461f9885884c0238fd9e17e3474f943ec5c6d2512d0670ebd9983efd8b89
3
+ size 6968
zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)