metadata
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
datasets:
- udpos28
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: 1a5e2b8e
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: udpos28
type: udpos28
config: te
split: validation
args: te
metrics:
- name: Precision
type: precision
value: 0.894336015358501
- name: Recall
type: recall
value: 0.8576779328683283
- name: F1
type: f1
value: 0.8680916339670367
- name: Accuracy
type: accuracy
value: 0.947129909365559
1a5e2b8e
This model is a fine-tuned version of xlm-roberta-base on the udpos28 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3219
- Precision: 0.8943
- Recall: 0.8577
- F1: 0.8681
- Accuracy: 0.9471
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0423 | 7.58 | 1000 | 0.3219 | 0.8943 | 0.8577 | 0.8681 | 0.9471 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0