OrionZheng
commited on
Commit
•
dafd67c
1
Parent(s):
6e8ef8a
Upload tokenizer and modeling_openmoe.py
Browse files- .gitattributes +1 -0
- README.md +120 -0
- modeling_openmoe.py +1140 -0
- special_tokens_map.json +308 -0
- spiece.model +3 -0
- tokenization_openmoe.py +22 -0
- tokenizer.json +3 -0
- tokenizer_config.json +2757 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,123 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
<p align="center">
|
5 |
+
<img width="150px" alt="OpenMoE" src="https://github.com/XueFuzhao/OpenMoE/blob/main/logo.jpg?raw=true">
|
6 |
+
</p>
|
7 |
+
<p align="center"><a href="https://github.com/XueFuzhao/OpenMoE/tree/main">[Github]</a> | <a href="https://colab.research.google.com/drive/1xIfIVafnlCP2XVICmRwkUFK3cwTJYjCY#scrollTo=62T-2mH_tsjG">[Colab Demo]</a> | <a href="https://huggingface.co/OrionZheng">[Huggingface]</a> | <a href="https://discord.gg/bjGnGfjegU">[Discord]</a> | <a href="https://twitter.com/xuefz/status/1693696988611739947?s=61&t=Xc2k2W7vU_hlpNizGDCmOw">[Twitter]</a> | <a href="https://xuefuzhao.notion.site/Aug-2023-OpenMoE-v0-2-Release-43808efc0f5845caa788f2db52021879">[Blog]</a></p>
|
8 |
+
</p>
|
9 |
+
<hr>
|
10 |
+
|
11 |
+
# OpenMoE-8B(890B tokens)
|
12 |
+
OpenMoE is a project aimed at igniting the open-source MoE community! We are releasing a family of open-sourced Mixture-of-Experts (MoE) Large Language Models.
|
13 |
+
|
14 |
+
Our project began in the summer of 2023. On August 22, 2023, we released the first batch of intermediate checkpoints (OpenMoE-base&8B), along with the data and code [[Twitter]](https://twitter.com/xuefz/status/1693696988611739947?s=61&t=Xc2k2W7vU_hlpNizGDCmOw). Subsequently, the OpenMoE-8B training was completed in November, 2023. After that, we embarked on explorations on 34B scale model, which is still ongoing.
|
15 |
+
|
16 |
+
As a small student team, instead of pursuing the best model with better data, computation, and human power, we devote to fully sharing our training data, strategies, model architecture, weights, and everything we have with the community. We hope this project will promote research on this promising field and invite more contributors to work on open-sourced MoE projects together!
|
17 |
+
|
18 |
+
[2024.01.12] The paper for the project and more evaluations are underway. For more information about the model, training, and evaluations, please visit our GitHub [repository](https://github.com/XueFuzhao/OpenMoE/tree/main).
|
19 |
+
|
20 |
+
|
21 |
+
## Model Weights
|
22 |
+
Currently, three models are released in total: OpenMoE-base, OpenMoE-8B(and its chat version), and OpenMoE-34B(intermediate checkpoint at 200B tokens).
|
23 |
+
|
24 |
+
| Model Name | Description | #Param |Huggingface |
|
25 |
+
|----------------|-------------------------------------------------|----------|-------------|
|
26 |
+
| **OpenMoE-8B(1.1T)** | 8B MoE with comparable FLOPs of a 1.6B LLaMA(No SFT) |8B |[Link](https://huggingface.co/OrionZheng/openmoe-8b) |
|
27 |
+
| **OpenMoE-8B-Chat (1.1T+SFT)** | OpenMoE-8B-1.1T supervised finetuned on the [WildChat GPT-4 Subset](https://huggingface.co/datasets/allenai/WildChat-nontoxic) |8B |[Link](https://huggingface.co/OrionZheng/openmoe-8b-chat) |
|
28 |
+
| **OpenMoE-34B (200B)** | 34B MoE with comparable FLOPs of a 7B LLaMA(No SFT) |34B |[Link](https://huggingface.co/OrionZheng/openmoe-34b-200B) |
|
29 |
+
|
30 |
+
Besides, we also release all our intermediate checkpoints for research purposes:
|
31 |
+
|
32 |
+
| Model Name | Description | #Param |Huggingface |
|
33 |
+
|----------------|-------------------------------------------------|----------|-------------|
|
34 |
+
| OpenMoE-8B-200B | 8B MoE with comparable FLOPs of a 1.6B LLaMA(No SFT) |8B |[Link](https://huggingface.co/OrionZheng/openmoe-8b-200B) |
|
35 |
+
| OpenMoE-8B-400B | 8B MoE with comparable FLOPs of a 1.6B LLaMA(No SFT) |8B |[Link](https://huggingface.co/OrionZheng/openmoe-8b-400B) |
|
36 |
+
| OpenMoE-8B-600B | 8B MoE with comparable FLOPs of a 1.6B LLaMA(No SFT) |8B |[Link](https://huggingface.co/OrionZheng/openmoe-8b-600B) |
|
37 |
+
| OpenMoE-8B-800B | 8B MoE with comparable FLOPs of a 1.6B LLaMA(No SFT) |8B |[Link](https://huggingface.co/OrionZheng/openmoe-8b-800B) |
|
38 |
+
| OpenMoE-8B-1T | 8B MoE with comparable FLOPs of a 1.6B LLaMA(No SFT) |8B |[Link](https://huggingface.co/OrionZheng/openmoe-8b-1T) |
|
39 |
+
| OpenMoE-base | A small MoE model for debugging only |637M |[Link](https://huggingface.co/OrionZheng/openmoe-base) |
|
40 |
+
| OpenLLaMA-base | A dense counter-part of OpenMoE-base |310M |[Link](https://huggingface.co/fuzhao/OpenLLaMA_Base) |
|
41 |
+
|
42 |
+
The base model, which were trained using 128 billion tokens, served primarily for debugging purposes. After validating the effectiveness of our model architecture, we did not pursue further training. Consequently, their performance might not be very well, and the checkpoint are not suitable for practical applications. Better performence can be oberved from our 8B or 34B versions.
|
43 |
+
|
44 |
+
The OpenMoE-8B with 4 MoE layers and 32 experts has been trained by 1.1T tokens. The SFT version has also been released after we finetuned the OpenMoE-8B-1.1T on the [wildchat]((https://huggingface.co/datasets/allenai/WildChat-nontoxic)) dataset's GPT-4 subset. Besides, we also provide some intermediate checkpoints at 200B and 890B tokens for research purposes.
|
45 |
+
|
46 |
+
We are still training our OpenMoE-34B, which is a MoE model with 8 MoE layer and 32 experts. We released the intermediate checkpoint trained on 200B tokens on huggingface. If you are interested in the latest checkpoint, please feel free to drop Fuzhao an email (f.xue@u.nus.edu).
|
47 |
+
|
48 |
+
## Get Started
|
49 |
+
|
50 |
+
### Inference with Pytorch
|
51 |
+
Our PyToch implementation is supported by [Colossal AI](https://github.com/hpcaitech/ColossalAI). You can install our forked version directly for easier setup:
|
52 |
+
```
|
53 |
+
# Python version: 3.10.12
|
54 |
+
# Install ColossalAI
|
55 |
+
git clone --branch my_openmoe https://github.com/Orion-Zheng/ColossalAI.git
|
56 |
+
pip install ./ColossalAI
|
57 |
+
python -m pip install -r ./ColossalAI/examples/language/openmoe/requirements.txt
|
58 |
+
```
|
59 |
+
|
60 |
+
Then, you can inference by the following code on a A100 80GB machine.
|
61 |
+
```
|
62 |
+
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
|
63 |
+
|
64 |
+
model_path = "ckpts/openmoe-8b-chat"
|
65 |
+
config = AutoConfig.from_pretrained(model_path)
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
67 |
+
model = AutoModelForCausalLM.from_pretrained(
|
68 |
+
model_path,
|
69 |
+
torch_dtype=torch.bfloat16,
|
70 |
+
trust_remote_code=True,
|
71 |
+
device_map='auto'
|
72 |
+
)
|
73 |
+
query = 'Question: How do I kill a process? Answer:'
|
74 |
+
prompt = f'''<<SYS>>
|
75 |
+
You are a helpful, respectful and honest assistant.
|
76 |
+
<</SYS>>
|
77 |
+
|
78 |
+
<s>[INST] {query} [/INST]'''
|
79 |
+
|
80 |
+
inputs = tokenizer(prompt, return_tensors="pt").to('cuda')
|
81 |
+
sample = model.generate(**inputs, max_new_tokens=32)
|
82 |
+
print(tokenizer.decode(sample[0]))
|
83 |
+
```
|
84 |
+
|
85 |
+
|
86 |
+
If you don't have GPUs on your hand, don't worry! you can still experience our model on Colab(Note: this require a $10 Colab Pro Plan). You can experiment with OpenMoE-8B-Chat on Colab directly by [this](https://colab.research.google.com/drive/1xIfIVafnlCP2XVICmRwkUFK3cwTJYjCY).
|
87 |
+
- Running OpenMoE-8B requires ~49GB of memory in float32 or ~23GB in bfloat16. It can be executed on a Colab `CPU High-RAM`(in float32) runtime or an `A100-40GB`(in bfloat16) runtime, both of which require Colab Pro. The float16 precision is not recommended because sometimes it will lead to performance degradation.
|
88 |
+
- Runing the OpenMoE-34B requries ~89GB of memory in bfloat16 or ~180GB in float32. To perform inference on multiple devices/offloading model weights to RAM, please refer to the script [here](https://github.com/XueFuzhao/OpenMoE/blob/main/script/inference_on_multi_devices.py).
|
89 |
+
- A more detailed env setup script can be found [here](https://github.com/XueFuzhao/OpenMoE/blob/main/env/prepare_env.sh), or if you use docker, you can refer to the dockerfile [here](https://github.com/XueFuzhao/OpenMoE/blob/main/env/openmoe_infer_dockerfile). Note: you don't need t5x and Jax dependency if you are using our [huggingface ckpts](https://huggingface.co/OrionZheng/openmoe-8b-chat) without converting the jax checkpoints.
|
90 |
+
|
91 |
+
Besides, we also provide a Colab [tutorial](https://colab.research.google.com/drive/1eIT1rtG7pORRQAYtQoMOAekUg7aZLDdn) demonstrating the jax checkpoint conversion.
|
92 |
+
|
93 |
+
|
94 |
+
## License
|
95 |
+
|
96 |
+
Our code is under Apache 2.0 License.
|
97 |
+
|
98 |
+
Since the models are trained on The Redpajama and The Stack dataset, please check the license of these two datasets for your model usage.
|
99 |
+
|
100 |
+
|
101 |
+
## Authors
|
102 |
+
|
103 |
+
This project is currently contributed by the following authors:
|
104 |
+
|
105 |
+
[Fuzhao Xue](https://xuefuzhao.github.io/), [Zian Zheng](https://zheng-zian-andy.com), [Yao Fu](https://franxyao.github.io/), [Jinjie Ni](http://jinjie.one/), [Zangwei Zheng](https://zhengzangw.github.io/), [Wangchunshu Zhou](https://michaelzhouwang.github.io/), [Yang You](https://www.comp.nus.edu.sg/~youy/)
|
106 |
+
|
107 |
+
## Acknowledgement
|
108 |
+
The computational resources for this project were generously provided by the [Google TPU Research Cloud(TRC)](https://sites.research.google/trc/about/). We extend our heartfelt thanks to TRC for their invaluable support, which has been fundamental to the success of our work. Besides, we are extremely grateful to the [ColossalAI Team](https://github.com/hpcaitech/ColossalAI) for their tremendous support with the PyTorch implementation, especially [Xuanlei Zhao](https://oahzxl.github.io/) and [Wenhao Chen](https://github.com/CWHer), making training and inference of OpenMoE on GPUs a reality.
|
109 |
+
|
110 |
+
## Citation
|
111 |
+
|
112 |
+
Please cite the repo if you use the model and code in this repo.
|
113 |
+
|
114 |
+
```bibtex
|
115 |
+
@misc{openmoe2023,
|
116 |
+
author = {Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou and Yang You},
|
117 |
+
title = {OpenMoE: Open Mixture-of-Experts Language Models},
|
118 |
+
year = {2023},
|
119 |
+
publisher = {GitHub},
|
120 |
+
journal = {GitHub repository},
|
121 |
+
howpublished = {\url{https://github.com/XueFuzhao/OpenMoE}},
|
122 |
+
}
|
123 |
+
```
|
modeling_openmoe.py
ADDED
@@ -0,0 +1,1140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch OpenMoE model."""
|
21 |
+
import math
|
22 |
+
from typing import List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.nn.functional as F
|
26 |
+
import torch.utils.checkpoint
|
27 |
+
from torch import nn
|
28 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
29 |
+
from transformers.modeling_utils import PreTrainedModel
|
30 |
+
from transformers.models.llama.configuration_llama import LlamaConfig
|
31 |
+
# from .llama_attn import LlamaAttention
|
32 |
+
|
33 |
+
from transformers.utils import (
|
34 |
+
add_start_docstrings,
|
35 |
+
add_start_docstrings_to_model_forward,
|
36 |
+
logging,
|
37 |
+
replace_return_docstrings,
|
38 |
+
)
|
39 |
+
|
40 |
+
from colossalai.kernel.cuda_native.mha.flash_attn_2 import HAS_FLASH_ATTN
|
41 |
+
from colossalai.kernel.triton.llama_act_combine_kernel import HAS_TRITON
|
42 |
+
from colossalai.moe.layers import SparseMLP
|
43 |
+
from colossalai.moe.manager import MOE_MANAGER
|
44 |
+
from colossalai.moe.utils import get_activation, set_moe_args
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
if HAS_TRITON:
|
49 |
+
from colossalai.kernel.triton.llama_act_combine_kernel import LlamaActCombine
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__)
|
52 |
+
|
53 |
+
_CONFIG_FOR_DOC = "LlamaConfig"
|
54 |
+
|
55 |
+
|
56 |
+
def set_openmoe_args(
|
57 |
+
config: LlamaConfig,
|
58 |
+
num_experts: int,
|
59 |
+
moe_layer_interval: int,
|
60 |
+
router_topk: int = 2,
|
61 |
+
router_capacity_factor_train: float = 1.25,
|
62 |
+
router_capacity_factor_eval: float = 2.0,
|
63 |
+
router_min_capacity: int = 4,
|
64 |
+
router_noisy_policy: str = None,
|
65 |
+
router_drop_tks: bool = True,
|
66 |
+
router_aux_loss_factor: float = 0.01,
|
67 |
+
router_z_loss_factor: float = 0.0001,
|
68 |
+
mlp_gated: bool = True,
|
69 |
+
label_smoothing: float = 0.001,
|
70 |
+
z_loss_factor: float = 0.01,
|
71 |
+
enable_load_balance: bool = False,
|
72 |
+
load_balance_tolerance: float = 0.1,
|
73 |
+
load_balance_beam_width: int = 8,
|
74 |
+
load_balance_group_swap_factor: float = 0.4,
|
75 |
+
enable_kernel: bool = False,
|
76 |
+
enable_comm_overlap: bool = False,
|
77 |
+
enable_hierarchical_alltoall: bool = False,
|
78 |
+
) -> None:
|
79 |
+
"""
|
80 |
+
MoE related arguments.
|
81 |
+
It inserts the MoE arguments into the Llama config.
|
82 |
+
|
83 |
+
Args:
|
84 |
+
config (LlamaConfig): Transformers Llama config.
|
85 |
+
num_experts (int, optional): Number of experts.
|
86 |
+
moe_layer_interval (int, optional): The interval moe layer.
|
87 |
+
router_topk (int, optional): Moe router top k. Defaults to 2.
|
88 |
+
router_capacity_factor_train (float, optional): Moe router max capacity for train. Defaults to 1.25.
|
89 |
+
router_capacity_factor_eval (float, optional): Moe router max capacity for eval. Defaults to 2.0.
|
90 |
+
router_min_capacity (int, optional): Moe router min capacity. Defaults to 4.
|
91 |
+
router_noisy_policy (str, optional): Moe router noisy policy. You can choose [Jitter, Gaussian, None]. Defaults to None.
|
92 |
+
router_drop_tks (bool, optional): Whether moe router drop tokens which exceed max capacity. Defaults to True.
|
93 |
+
router_aux_loss_factor (float, optional): Moe router aux loss. You can refer to STMoE for details. Defaults to 0.01.
|
94 |
+
router_z_loss_factor (float, optional): Moe router z loss. You can refer to STMoE for details. Defaults to 0.01.
|
95 |
+
mlp_gated (bool, optional): Use gate in mlp. Defaults to True.
|
96 |
+
label_smoothing (float, optional): Label smoothing. Defaults to 0.001.
|
97 |
+
z_loss_factor (float, optional): The final outputs' classification z loss factor. Defaults to 0.01.
|
98 |
+
enable_load_balance (bool, optional): Expert load balance. Defaults to False.
|
99 |
+
load_balance_tolerance (float, optional): Expert load balance search's difference tolerance. Defaults to 0.1.
|
100 |
+
load_balance_beam_width (int, optional): Expert load balance search's beam width. Defaults to 8.
|
101 |
+
load_balance_group_swap_factor (float, optional): Expert load balance group swap factor. Longer value encourages less swap. Defaults to 0.4.
|
102 |
+
enable_kernel (bool, optional): Use kernel optimization. Defaults to False.
|
103 |
+
enable_comm_overlap (bool, optional): Use communication overlap for MoE. Recommended to enable for muiti-node training. Defaults to False.
|
104 |
+
enable_hierarchical_alltoall (bool, optional): Use hierarchical alltoall for MoE. Defaults to False.
|
105 |
+
"""
|
106 |
+
moe_args = dict(
|
107 |
+
num_experts=num_experts,
|
108 |
+
moe_layer_interval=moe_layer_interval,
|
109 |
+
router_topk=router_topk,
|
110 |
+
router_capacity_factor_train=router_capacity_factor_train,
|
111 |
+
router_capacity_factor_eval=router_capacity_factor_eval,
|
112 |
+
router_min_capacity=router_min_capacity,
|
113 |
+
router_noisy_policy=router_noisy_policy,
|
114 |
+
router_drop_tks=router_drop_tks,
|
115 |
+
router_aux_loss_factor=router_aux_loss_factor,
|
116 |
+
router_z_loss_factor=router_z_loss_factor,
|
117 |
+
mlp_gated=mlp_gated,
|
118 |
+
label_smoothing=label_smoothing,
|
119 |
+
z_loss_factor=z_loss_factor,
|
120 |
+
enable_load_balance=enable_load_balance,
|
121 |
+
load_balance_tolerance=load_balance_tolerance,
|
122 |
+
load_balance_beam_width=load_balance_beam_width,
|
123 |
+
load_balance_group_swap_factor=load_balance_group_swap_factor,
|
124 |
+
enable_kernel=enable_kernel,
|
125 |
+
enable_comm_overlap=enable_comm_overlap,
|
126 |
+
enable_hierarchical_alltoall=enable_hierarchical_alltoall,
|
127 |
+
)
|
128 |
+
set_moe_args(config, moe_args)
|
129 |
+
|
130 |
+
|
131 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
132 |
+
def _make_causal_mask(
|
133 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
134 |
+
):
|
135 |
+
"""
|
136 |
+
Make causal mask used for bi-directional self-attention.
|
137 |
+
"""
|
138 |
+
bsz, tgt_len = input_ids_shape
|
139 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
140 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
141 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
142 |
+
mask = mask.to(dtype)
|
143 |
+
|
144 |
+
if past_key_values_length > 0:
|
145 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
146 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
147 |
+
|
148 |
+
|
149 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
150 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
151 |
+
"""
|
152 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
153 |
+
"""
|
154 |
+
bsz, src_len = mask.size()
|
155 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
156 |
+
|
157 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
158 |
+
|
159 |
+
inverted_mask = 1.0 - expanded_mask
|
160 |
+
|
161 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
162 |
+
|
163 |
+
|
164 |
+
def apply_rotary_embedding(q, k, cos, sin, decode=False, rotary_index=None):
|
165 |
+
# q: (bs, q_len, num_heads, head_dim)
|
166 |
+
# k: (bs, q_len [+past_kv_len], num_heads, head_dim)
|
167 |
+
# cos: (max_seq_len, head_dim)
|
168 |
+
# sin: (max_seq_len, head_dim)
|
169 |
+
# rotary_index: (bs, 1) # only used during decoding, when one query token is input at a time
|
170 |
+
"""Helper function to apply Rotary Embeddings."""
|
171 |
+
cos = cos.to(q.dtype)
|
172 |
+
sin = sin.to(q.dtype)
|
173 |
+
|
174 |
+
if len(k.shape) == 3: # for multi query attention
|
175 |
+
k = k.unsqueeze(2)
|
176 |
+
multiquery = True
|
177 |
+
else:
|
178 |
+
multiquery = False
|
179 |
+
|
180 |
+
batch, qlen, qheads, d = q.shape
|
181 |
+
kbatch, klen, kheads, kd = k.shape
|
182 |
+
assert batch == kbatch, f"{batch} != {kbatch}"
|
183 |
+
assert d == kd, f"{d} != {kd}"
|
184 |
+
if decode and qlen == 1 and rotary_index is not None:
|
185 |
+
qcos = cos[rotary_index, :] # (bs, 1, head_dim)
|
186 |
+
qsin = sin[rotary_index, :] # (bs, 1, head_dim)
|
187 |
+
qcos = qcos.unsqueeze(2) # (bs, q_len=1, 1, head_dim) # broadcast to all heads
|
188 |
+
qsin = qsin.unsqueeze(2) # (bs, q_len=1, 1, head_dim)
|
189 |
+
else:
|
190 |
+
qcos, qsin = cos[:qlen, :], sin[:qlen, :] # (q_len, head_dim)
|
191 |
+
qcos = qcos.unsqueeze(0).unsqueeze(2) # (1, q_len, 1, head_dim)
|
192 |
+
qsin = qsin.unsqueeze(0).unsqueeze(2)
|
193 |
+
|
194 |
+
kcos, ksin = cos[:klen, :], sin[:klen, :] # (k_len, head_dim)
|
195 |
+
kcos = kcos.unsqueeze(0).unsqueeze(2) # (1, k_len, 1, head_dim) # broadcast to the whole batch, broadcast to all heads
|
196 |
+
ksin = ksin.unsqueeze(0).unsqueeze(2) # (1, k_len, 1, head_dim)
|
197 |
+
out_q = (q * qcos) + (rotate_half(q) * qsin)
|
198 |
+
out_k = (k * kcos) + (rotate_half(k) * ksin)
|
199 |
+
|
200 |
+
if multiquery:
|
201 |
+
out_k = out_k.squeeze(2)
|
202 |
+
|
203 |
+
return out_q, out_k
|
204 |
+
|
205 |
+
|
206 |
+
def rotate_half(x):
|
207 |
+
"""Rotates half the hidden dims of the input."""
|
208 |
+
x1 = x[..., : x.shape[-1] // 2]
|
209 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
210 |
+
return torch.cat((-x2, x1), dim=-1)
|
211 |
+
|
212 |
+
class LlamaRMSNorm(nn.Module):
|
213 |
+
def __init__(self, hidden_size, eps=1e-6):
|
214 |
+
"""
|
215 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
216 |
+
"""
|
217 |
+
super().__init__()
|
218 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
219 |
+
self.variance_epsilon = eps
|
220 |
+
|
221 |
+
def forward(self, hidden_states):
|
222 |
+
input_dtype = hidden_states.dtype
|
223 |
+
hidden_states = hidden_states.to(torch.float32)
|
224 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
225 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
226 |
+
return self.weight * hidden_states.to(input_dtype)
|
227 |
+
|
228 |
+
def SwiGLU(x):
|
229 |
+
"""Gated linear unit activation function.
|
230 |
+
Args:
|
231 |
+
x : input array
|
232 |
+
axis: the axis along which the split should be computed (default: -1)
|
233 |
+
"""
|
234 |
+
size = x.shape[-1]
|
235 |
+
assert size % 2 == 0, "axis size must be divisible by 2"
|
236 |
+
x1, x2 = torch.split(x, size // 2, -1)
|
237 |
+
return x1 * (x2 * torch.sigmoid(x2))
|
238 |
+
|
239 |
+
|
240 |
+
class OpenMoeMLP(nn.Module):
|
241 |
+
def __init__(self, config: LlamaConfig):
|
242 |
+
super().__init__()
|
243 |
+
self.pretraining_tp = config.pretraining_tp
|
244 |
+
self.hidden_size = config.hidden_size
|
245 |
+
self.intermediate_size = config.intermediate_size
|
246 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
|
247 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
248 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
249 |
+
self.hidden_act = config.hidden_act
|
250 |
+
self.act_fn = get_activation(self.hidden_act)
|
251 |
+
self.use_kernel = config.enable_kernel
|
252 |
+
|
253 |
+
def forward(self, x):
|
254 |
+
if self.pretraining_tp > 1:
|
255 |
+
slice = self.intermediate_size // self.pretraining_tp
|
256 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
257 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
258 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
259 |
+
|
260 |
+
gate_proj = torch.cat([F.linear(x, gate_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)
|
261 |
+
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)
|
262 |
+
|
263 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
264 |
+
down_proj = [F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.pretraining_tp)]
|
265 |
+
down_proj = sum(down_proj)
|
266 |
+
else:
|
267 |
+
if HAS_TRITON and self.use_kernel and self.hidden_act == "swiglu":
|
268 |
+
down_proj = self.down_proj(LlamaActCombine.apply(self.gate_proj(x), self.up_proj(x)))
|
269 |
+
else:
|
270 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
271 |
+
|
272 |
+
return down_proj
|
273 |
+
|
274 |
+
|
275 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
276 |
+
"""
|
277 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
278 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
279 |
+
"""
|
280 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
281 |
+
if n_rep == 1:
|
282 |
+
return hidden_states
|
283 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
284 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
285 |
+
|
286 |
+
|
287 |
+
class OpenMoeAttention(nn.Module):
|
288 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
289 |
+
|
290 |
+
def __init__(self, config: LlamaConfig):
|
291 |
+
super().__init__()
|
292 |
+
self.config = config
|
293 |
+
self.hidden_size = config.hidden_size
|
294 |
+
self.num_heads = config.num_attention_heads
|
295 |
+
self.head_dim = config.head_dim
|
296 |
+
self.num_key_value_heads = config.num_key_value_heads
|
297 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
298 |
+
self.pretraining_tp = config.pretraining_tp
|
299 |
+
self.max_position_embeddings = config.max_position_embeddings
|
300 |
+
|
301 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
302 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
303 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
304 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
305 |
+
self.generate_fixed_pos_embedding(self.head_dim, self.max_position_embeddings, 1.0, 1e4)
|
306 |
+
self.use_kernel = config.enable_kernel
|
307 |
+
|
308 |
+
|
309 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
310 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
311 |
+
|
312 |
+
def generate_fixed_pos_embedding(self, features, length, min_timescale=1.0, max_timescale=10000.0):
|
313 |
+
"""Generate Sin/Cos for Rotary Embeddings.
|
314 |
+
|
315 |
+
Args:
|
316 |
+
features: an integer
|
317 |
+
length: an integer
|
318 |
+
min_timescale: an optional float
|
319 |
+
max_timescale: an optional float
|
320 |
+
|
321 |
+
Returns:
|
322 |
+
output_sin: a float32 Tensor with shape [length, features]
|
323 |
+
output_cos: a float32 Tensor with shape [length, features]
|
324 |
+
"""
|
325 |
+
fraction = torch.arange(0, features, 2, dtype=torch.float32) / features
|
326 |
+
timescale = min_timescale * (max_timescale / min_timescale) ** fraction
|
327 |
+
rotational_frequency = 1.0 / timescale
|
328 |
+
|
329 |
+
sinusoid_inp = torch.einsum("i,j->ij", torch.arange(length, dtype=torch.float32), rotational_frequency)
|
330 |
+
|
331 |
+
sinusoid_inp = torch.cat([sinusoid_inp, sinusoid_inp], dim=-1)
|
332 |
+
|
333 |
+
self.register_buffer('sin', torch.sin(sinusoid_inp), persistent=False) # persistent=False --> buffer won't appear in the state_dict
|
334 |
+
self.register_buffer('cos', torch.cos(sinusoid_inp), persistent=False)
|
335 |
+
|
336 |
+
def forward(
|
337 |
+
self,
|
338 |
+
hidden_states: torch.Tensor,
|
339 |
+
attention_mask: Optional[torch.Tensor] = None,
|
340 |
+
position_ids: Optional[torch.LongTensor] = None,
|
341 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
342 |
+
output_attentions: bool = False,
|
343 |
+
use_cache: bool = False,
|
344 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
345 |
+
bsz, q_len, _ = hidden_states.size()
|
346 |
+
|
347 |
+
if self.pretraining_tp > 1:
|
348 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.pretraining_tp
|
349 |
+
query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim) // self.pretraining_tp, dim=0)
|
350 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
351 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
352 |
+
|
353 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp)]
|
354 |
+
query_states = torch.cat(query_states, dim=-1)
|
355 |
+
|
356 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp)]
|
357 |
+
key_states = torch.cat(key_states, dim=-1)
|
358 |
+
|
359 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp)]
|
360 |
+
value_states = torch.cat(value_states, dim=-1)
|
361 |
+
|
362 |
+
else:
|
363 |
+
query_states = self.q_proj(hidden_states)
|
364 |
+
key_states = self.k_proj(hidden_states)
|
365 |
+
value_states = self.v_proj(hidden_states)
|
366 |
+
|
367 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
368 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
369 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
370 |
+
|
371 |
+
kv_seq_len = key_states.shape[-2]
|
372 |
+
if past_key_value is not None:
|
373 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
374 |
+
# cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
375 |
+
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
376 |
+
if past_key_value is not None:
|
377 |
+
# reuse k, v, self_attention
|
378 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
379 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
380 |
+
|
381 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
382 |
+
|
383 |
+
query_states = query_states.transpose(1, 2)
|
384 |
+
key_states = key_states.transpose(1, 2)
|
385 |
+
max_length = max(query_states.shape[1], key_states.shape[1])
|
386 |
+
assert max_length <= self.sin.shape[0]
|
387 |
+
sin, cos = self.sin[:max_length], self.cos[:max_length]
|
388 |
+
# TODO: for inference, we can add emb kv into cache to avoid computation
|
389 |
+
query_states, key_states = apply_rotary_embedding(
|
390 |
+
query_states, key_states, cos, sin, decode=True if q_len == 1 else False, rotary_index=position_ids
|
391 |
+
)
|
392 |
+
query_states = query_states.transpose(1, 2)
|
393 |
+
key_states = key_states.transpose(1, 2)
|
394 |
+
|
395 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
396 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
397 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
398 |
+
|
399 |
+
if HAS_FLASH_ATTN and self.use_kernel:
|
400 |
+
from flash_attn import flash_attn_func
|
401 |
+
|
402 |
+
query_states = query_states.transpose(1, 2)
|
403 |
+
key_states = key_states.transpose(1, 2)
|
404 |
+
value_states = value_states.transpose(1, 2)
|
405 |
+
attn_output = flash_attn_func(query_states, key_states, value_states, softmax_scale=1.0, causal=True)
|
406 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
407 |
+
else:
|
408 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
|
409 |
+
|
410 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
411 |
+
raise ValueError(
|
412 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
413 |
+
f" {attn_weights.size()}"
|
414 |
+
)
|
415 |
+
|
416 |
+
if attention_mask is not None:
|
417 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
418 |
+
raise ValueError(
|
419 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
420 |
+
)
|
421 |
+
if self.training:
|
422 |
+
attention_mask = attention_mask.clone().detach()
|
423 |
+
attention_mask[:, :, :, 0] = 0
|
424 |
+
attn_weights = attn_weights + attention_mask
|
425 |
+
|
426 |
+
# upcast attention to fp32
|
427 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
428 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
429 |
+
|
430 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
431 |
+
raise ValueError(
|
432 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
433 |
+
f" {attn_output.size()}"
|
434 |
+
)
|
435 |
+
|
436 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
437 |
+
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
|
438 |
+
|
439 |
+
if self.pretraining_tp > 1:
|
440 |
+
attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
|
441 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.pretraining_tp, dim=1)
|
442 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.pretraining_tp)])
|
443 |
+
else:
|
444 |
+
attn_output = self.o_proj(attn_output)
|
445 |
+
|
446 |
+
if not output_attentions:
|
447 |
+
attn_weights = None
|
448 |
+
|
449 |
+
return attn_output, attn_weights, past_key_value
|
450 |
+
|
451 |
+
|
452 |
+
class OpenMoeDecoderLayer(nn.Module):
|
453 |
+
def __init__(self, config: LlamaConfig, moe: bool):
|
454 |
+
super().__init__()
|
455 |
+
self.hidden_size = config.hidden_size
|
456 |
+
self.moe = moe
|
457 |
+
self.self_attn = OpenMoeAttention(config=config)
|
458 |
+
# self.self_attn = LlamaAttention(config=config) # TODO: introduce LLaMA Positional Encoding
|
459 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
460 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
461 |
+
if self.moe:
|
462 |
+
self.mlp = SparseMLP(
|
463 |
+
num_experts=config.num_experts,
|
464 |
+
hidden_size=config.hidden_size,
|
465 |
+
intermediate_size=config.intermediate_size,
|
466 |
+
router_top_k=config.router_topk,
|
467 |
+
router_capacity_factor_train=config.router_capacity_factor_train,
|
468 |
+
router_capacity_factor_eval=config.router_capacity_factor_eval,
|
469 |
+
router_min_capacity=config.router_min_capacity,
|
470 |
+
router_noisy_policy=config.router_noisy_policy,
|
471 |
+
router_drop_tks=config.router_drop_tks,
|
472 |
+
mlp_activation=config.hidden_act,
|
473 |
+
mlp_gated=config.mlp_gated,
|
474 |
+
enable_load_balance=config.enable_load_balance,
|
475 |
+
load_balance_tolerance=config.load_balance_tolerance,
|
476 |
+
load_balance_beam_width=config.load_balance_beam_width,
|
477 |
+
load_balance_group_swap_factor=config.load_balance_group_swap_factor,
|
478 |
+
enable_kernel=config.enable_kernel,
|
479 |
+
enable_comm_overlap=config.enable_comm_overlap,
|
480 |
+
)
|
481 |
+
self.pre_extra_mlp_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
482 |
+
self.extra_mlp = OpenMoeMLP(config)
|
483 |
+
else:
|
484 |
+
self.mlp = OpenMoeMLP(config)
|
485 |
+
|
486 |
+
def forward(
|
487 |
+
self,
|
488 |
+
hidden_states: torch.Tensor,
|
489 |
+
attention_mask: Optional[torch.Tensor] = None,
|
490 |
+
position_ids: Optional[torch.LongTensor] = None,
|
491 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
492 |
+
output_attentions: Optional[bool] = False,
|
493 |
+
use_cache: Optional[bool] = False,
|
494 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
495 |
+
"""
|
496 |
+
Args:
|
497 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
498 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
499 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
500 |
+
output_attentions (`bool`, *optional*):
|
501 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
502 |
+
returned tensors for more detail.
|
503 |
+
use_cache (`bool`, *optional*):
|
504 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
505 |
+
(see `past_key_values`).
|
506 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
507 |
+
"""
|
508 |
+
|
509 |
+
residual = hidden_states
|
510 |
+
|
511 |
+
hidden_states = self.input_layernorm(hidden_states)
|
512 |
+
|
513 |
+
# Self Attention
|
514 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
515 |
+
hidden_states=hidden_states,
|
516 |
+
attention_mask=attention_mask,
|
517 |
+
position_ids=position_ids,
|
518 |
+
past_key_value=past_key_value,
|
519 |
+
output_attentions=output_attentions,
|
520 |
+
use_cache=use_cache,
|
521 |
+
)
|
522 |
+
hidden_states = residual + hidden_states
|
523 |
+
|
524 |
+
# Fully Connected
|
525 |
+
residual = hidden_states
|
526 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
527 |
+
hidden_states = self.mlp(hidden_states)
|
528 |
+
hidden_states = residual + hidden_states
|
529 |
+
|
530 |
+
if self.moe:
|
531 |
+
residual = hidden_states
|
532 |
+
hidden_states = self.pre_extra_mlp_layernorm(hidden_states)
|
533 |
+
hidden_states = self.extra_mlp(hidden_states)
|
534 |
+
hidden_states = residual + hidden_states
|
535 |
+
|
536 |
+
outputs = (hidden_states,)
|
537 |
+
|
538 |
+
if output_attentions:
|
539 |
+
outputs += (self_attn_weights,)
|
540 |
+
|
541 |
+
if use_cache:
|
542 |
+
outputs += (present_key_value,)
|
543 |
+
|
544 |
+
return outputs
|
545 |
+
|
546 |
+
|
547 |
+
LLAMA_START_DOCSTRING = r"""
|
548 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
549 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
550 |
+
etc.)
|
551 |
+
|
552 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
553 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
554 |
+
and behavior.
|
555 |
+
|
556 |
+
Parameters:
|
557 |
+
config ([`LlamaConfig`]):
|
558 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
559 |
+
load the weights associated with the model, only the configuration. Check out the
|
560 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
561 |
+
"""
|
562 |
+
|
563 |
+
|
564 |
+
@add_start_docstrings(
|
565 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
566 |
+
LLAMA_START_DOCSTRING,
|
567 |
+
)
|
568 |
+
class OpenMoePreTrainedModel(PreTrainedModel):
|
569 |
+
config_class = LlamaConfig
|
570 |
+
base_model_prefix = "model"
|
571 |
+
supports_gradient_checkpointing = True
|
572 |
+
_no_split_modules = ["OpenMoeDecoderLayer"]
|
573 |
+
_skip_keys_device_placement = "past_key_values"
|
574 |
+
|
575 |
+
def _init_weights(self, module):
|
576 |
+
std = self.config.initializer_range
|
577 |
+
if isinstance(module, nn.Linear):
|
578 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
579 |
+
if module.bias is not None:
|
580 |
+
module.bias.data.zero_()
|
581 |
+
elif isinstance(module, nn.Embedding):
|
582 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
583 |
+
if module.padding_idx is not None:
|
584 |
+
module.weight.data[module.padding_idx].zero_()
|
585 |
+
|
586 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
587 |
+
if isinstance(module, OpenMoeModel):
|
588 |
+
module.gradient_checkpointing = value
|
589 |
+
|
590 |
+
|
591 |
+
LLAMA_INPUTS_DOCSTRING = r"""
|
592 |
+
Args:
|
593 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
594 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
595 |
+
it.
|
596 |
+
|
597 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
598 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
599 |
+
|
600 |
+
[What are input IDs?](../glossary#input-ids)
|
601 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
602 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
603 |
+
|
604 |
+
- 1 for tokens that are **not masked**,
|
605 |
+
- 0 for tokens that are **masked**.
|
606 |
+
|
607 |
+
[What are attention masks?](../glossary#attention-mask)
|
608 |
+
|
609 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
610 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
611 |
+
|
612 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
613 |
+
`past_key_values`).
|
614 |
+
|
615 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
616 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
617 |
+
information on the default strategy.
|
618 |
+
|
619 |
+
- 1 indicates the head is **not masked**,
|
620 |
+
- 0 indicates the head is **masked**.
|
621 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
622 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
623 |
+
config.n_positions - 1]`.
|
624 |
+
|
625 |
+
[What are position IDs?](../glossary#position-ids)
|
626 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
627 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
628 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
629 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
630 |
+
|
631 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
632 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
633 |
+
|
634 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
635 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
636 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
637 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
638 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
639 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
640 |
+
model's internal embedding lookup matrix.
|
641 |
+
use_cache (`bool`, *optional*):
|
642 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
643 |
+
`past_key_values`).
|
644 |
+
output_attentions (`bool`, *optional*):
|
645 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
646 |
+
tensors for more detail.
|
647 |
+
output_hidden_states (`bool`, *optional*):
|
648 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
649 |
+
more detail.
|
650 |
+
return_dict (`bool`, *optional*):
|
651 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
652 |
+
"""
|
653 |
+
|
654 |
+
|
655 |
+
@add_start_docstrings(
|
656 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
657 |
+
LLAMA_START_DOCSTRING,
|
658 |
+
)
|
659 |
+
class OpenMoeModel(OpenMoePreTrainedModel):
|
660 |
+
"""
|
661 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
662 |
+
|
663 |
+
Args:
|
664 |
+
config: LlamaConfig
|
665 |
+
"""
|
666 |
+
|
667 |
+
def __init__(self, config: LlamaConfig):
|
668 |
+
super().__init__(config)
|
669 |
+
self.padding_idx = config.pad_token_id
|
670 |
+
self.vocab_size = config.vocab_size
|
671 |
+
|
672 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
673 |
+
self.layers = nn.ModuleList(
|
674 |
+
[
|
675 |
+
OpenMoeDecoderLayer(config, moe=True if (i + 1) % config.moe_layer_interval == 0 else False)
|
676 |
+
for i in range(config.num_hidden_layers)
|
677 |
+
]
|
678 |
+
)
|
679 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
680 |
+
|
681 |
+
self.gradient_checkpointing = False
|
682 |
+
# Initialize weights and apply final processing
|
683 |
+
self.post_init()
|
684 |
+
|
685 |
+
def get_input_embeddings(self):
|
686 |
+
return self.embed_tokens
|
687 |
+
|
688 |
+
def set_input_embeddings(self, value):
|
689 |
+
self.embed_tokens = value
|
690 |
+
|
691 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
692 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
693 |
+
# create causal mask
|
694 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
695 |
+
combined_attention_mask = None
|
696 |
+
if input_shape[-1] > 1:
|
697 |
+
combined_attention_mask = _make_causal_mask(
|
698 |
+
input_shape,
|
699 |
+
inputs_embeds.dtype,
|
700 |
+
device=inputs_embeds.device,
|
701 |
+
past_key_values_length=past_key_values_length,
|
702 |
+
)
|
703 |
+
|
704 |
+
if attention_mask is not None:
|
705 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
706 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
707 |
+
inputs_embeds.device
|
708 |
+
)
|
709 |
+
combined_attention_mask = (
|
710 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
711 |
+
)
|
712 |
+
|
713 |
+
return combined_attention_mask
|
714 |
+
|
715 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
716 |
+
def forward(
|
717 |
+
self,
|
718 |
+
input_ids: torch.LongTensor = None,
|
719 |
+
attention_mask: Optional[torch.Tensor] = None,
|
720 |
+
position_ids: Optional[torch.LongTensor] = None,
|
721 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
722 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
723 |
+
use_cache: Optional[bool] = None,
|
724 |
+
output_attentions: Optional[bool] = None,
|
725 |
+
output_hidden_states: Optional[bool] = None,
|
726 |
+
return_dict: Optional[bool] = None,
|
727 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
728 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
729 |
+
output_hidden_states = (
|
730 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
731 |
+
)
|
732 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
733 |
+
|
734 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
735 |
+
|
736 |
+
# retrieve input_ids and inputs_embeds
|
737 |
+
if input_ids is not None and inputs_embeds is not None:
|
738 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
739 |
+
elif input_ids is not None:
|
740 |
+
batch_size, seq_length = input_ids.shape
|
741 |
+
elif inputs_embeds is not None:
|
742 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
743 |
+
else:
|
744 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
745 |
+
|
746 |
+
seq_length_with_past = seq_length
|
747 |
+
past_key_values_length = 0
|
748 |
+
|
749 |
+
if past_key_values is not None:
|
750 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
751 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
752 |
+
|
753 |
+
if position_ids is None:
|
754 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
755 |
+
position_ids = torch.arange(
|
756 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
757 |
+
)
|
758 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
759 |
+
else:
|
760 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
761 |
+
|
762 |
+
if inputs_embeds is None:
|
763 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
764 |
+
# embed positions
|
765 |
+
if attention_mask is None:
|
766 |
+
attention_mask = torch.ones(
|
767 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
768 |
+
)
|
769 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
770 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
771 |
+
)
|
772 |
+
|
773 |
+
hidden_states = inputs_embeds
|
774 |
+
|
775 |
+
if self.gradient_checkpointing and self.training:
|
776 |
+
if use_cache:
|
777 |
+
logger.warning_once(
|
778 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
779 |
+
)
|
780 |
+
use_cache = False
|
781 |
+
|
782 |
+
# decoder layers
|
783 |
+
all_hidden_states = () if output_hidden_states else None
|
784 |
+
all_self_attns = () if output_attentions else None
|
785 |
+
next_decoder_cache = () if use_cache else None
|
786 |
+
|
787 |
+
for idx, decoder_layer in enumerate(self.layers):
|
788 |
+
if output_hidden_states:
|
789 |
+
all_hidden_states += (hidden_states,)
|
790 |
+
|
791 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
792 |
+
|
793 |
+
if self.gradient_checkpointing and self.training:
|
794 |
+
|
795 |
+
def create_custom_forward(module):
|
796 |
+
def custom_forward(*inputs):
|
797 |
+
# None for past_key_value
|
798 |
+
return module(*inputs, output_attentions, None)
|
799 |
+
|
800 |
+
return custom_forward
|
801 |
+
|
802 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
803 |
+
create_custom_forward(decoder_layer),
|
804 |
+
hidden_states,
|
805 |
+
attention_mask,
|
806 |
+
position_ids,
|
807 |
+
None,
|
808 |
+
)
|
809 |
+
else:
|
810 |
+
layer_outputs = decoder_layer(
|
811 |
+
hidden_states,
|
812 |
+
attention_mask=attention_mask,
|
813 |
+
position_ids=position_ids,
|
814 |
+
past_key_value=past_key_value,
|
815 |
+
output_attentions=output_attentions,
|
816 |
+
use_cache=use_cache,
|
817 |
+
)
|
818 |
+
|
819 |
+
hidden_states = layer_outputs[0]
|
820 |
+
|
821 |
+
if use_cache:
|
822 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
823 |
+
|
824 |
+
if output_attentions:
|
825 |
+
all_self_attns += (layer_outputs[1],)
|
826 |
+
|
827 |
+
hidden_states = self.norm(hidden_states)
|
828 |
+
|
829 |
+
# add hidden states from the last decoder layer
|
830 |
+
if output_hidden_states:
|
831 |
+
all_hidden_states += (hidden_states,)
|
832 |
+
|
833 |
+
next_cache = next_decoder_cache if use_cache else None
|
834 |
+
if not return_dict:
|
835 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
836 |
+
return BaseModelOutputWithPast(
|
837 |
+
last_hidden_state=hidden_states,
|
838 |
+
past_key_values=next_cache,
|
839 |
+
hidden_states=all_hidden_states,
|
840 |
+
attentions=all_self_attns,
|
841 |
+
)
|
842 |
+
|
843 |
+
|
844 |
+
class OpenMoeForCausalLM(OpenMoePreTrainedModel):
|
845 |
+
# _tied_weights_keys = ["lm_head.weight"]
|
846 |
+
|
847 |
+
def __init__(self, config):
|
848 |
+
super().__init__(config)
|
849 |
+
self.model = OpenMoeModel(config)
|
850 |
+
self.pretraining_tp = config.pretraining_tp
|
851 |
+
self.vocab_size = config.vocab_size
|
852 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
853 |
+
|
854 |
+
# Initialize weights and apply final processing
|
855 |
+
self.post_init()
|
856 |
+
|
857 |
+
def get_input_embeddings(self):
|
858 |
+
return self.model.embed_tokens
|
859 |
+
|
860 |
+
def set_input_embeddings(self, value):
|
861 |
+
self.model.embed_tokens = value
|
862 |
+
|
863 |
+
def get_output_embeddings(self):
|
864 |
+
return self.lm_head
|
865 |
+
|
866 |
+
def set_output_embeddings(self, new_embeddings):
|
867 |
+
self.lm_head = new_embeddings
|
868 |
+
|
869 |
+
def set_decoder(self, decoder):
|
870 |
+
self.model = decoder
|
871 |
+
|
872 |
+
def get_decoder(self):
|
873 |
+
return self.model
|
874 |
+
|
875 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
876 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
877 |
+
def forward(
|
878 |
+
self,
|
879 |
+
input_ids: torch.LongTensor = None,
|
880 |
+
attention_mask: Optional[torch.Tensor] = None,
|
881 |
+
position_ids: Optional[torch.LongTensor] = None,
|
882 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
883 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
884 |
+
labels: Optional[torch.LongTensor] = None,
|
885 |
+
use_cache: Optional[bool] = None,
|
886 |
+
output_attentions: Optional[bool] = None,
|
887 |
+
output_hidden_states: Optional[bool] = None,
|
888 |
+
return_dict: Optional[bool] = None,
|
889 |
+
chunk_head: Optional[bool] = True,
|
890 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
891 |
+
r"""
|
892 |
+
Args:
|
893 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
894 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
895 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
896 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
897 |
+
|
898 |
+
Returns:
|
899 |
+
|
900 |
+
Example:
|
901 |
+
|
902 |
+
```python
|
903 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
904 |
+
|
905 |
+
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
906 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
907 |
+
|
908 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
909 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
910 |
+
|
911 |
+
>>> # Generate
|
912 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
913 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
914 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
915 |
+
```"""
|
916 |
+
# reset moe loss
|
917 |
+
MOE_MANAGER.reset_loss()
|
918 |
+
|
919 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
920 |
+
output_hidden_states = (
|
921 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
922 |
+
)
|
923 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
924 |
+
|
925 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
926 |
+
outputs = self.model(
|
927 |
+
input_ids=input_ids,
|
928 |
+
attention_mask=attention_mask,
|
929 |
+
position_ids=position_ids,
|
930 |
+
past_key_values=past_key_values,
|
931 |
+
inputs_embeds=inputs_embeds,
|
932 |
+
use_cache=use_cache,
|
933 |
+
output_attentions=output_attentions,
|
934 |
+
output_hidden_states=output_hidden_states,
|
935 |
+
return_dict=return_dict,
|
936 |
+
)
|
937 |
+
|
938 |
+
hidden_states = outputs[0]
|
939 |
+
if self.pretraining_tp > 1:
|
940 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.pretraining_tp, dim=0)
|
941 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.pretraining_tp)]
|
942 |
+
logits = torch.cat(logits, dim=-1)
|
943 |
+
|
944 |
+
loss = None
|
945 |
+
# if no training, just do forward
|
946 |
+
if labels is None:
|
947 |
+
logits = self.lm_head(hidden_states)
|
948 |
+
logits = logits.float()
|
949 |
+
# the vocab size for openmoe is 30w+
|
950 |
+
# which causes great activation memory in training, up to 20G for one sequence
|
951 |
+
# so we use chunk and checkpoint to reduce memory
|
952 |
+
else:
|
953 |
+
if chunk_head == True:
|
954 |
+
|
955 |
+
def create_custom_forward(module):
|
956 |
+
def custom_forward(*inputs):
|
957 |
+
logits = module(inputs[0])
|
958 |
+
logits = logits.float()
|
959 |
+
# Shift so that tokens < n predict n
|
960 |
+
shift_logits = logits[..., :-1, :].contiguous().float()
|
961 |
+
shift_labels = inputs[1][..., 1:].contiguous()
|
962 |
+
# Flatten the tokens
|
963 |
+
loss = self._calculate_loss(shift_logits, shift_labels)
|
964 |
+
return loss
|
965 |
+
|
966 |
+
return custom_forward
|
967 |
+
|
968 |
+
aux_loss, z_loss = self._calculate_router_loss()
|
969 |
+
loss = aux_loss + z_loss
|
970 |
+
for batch_idx in range(hidden_states.shape[0]):
|
971 |
+
loss = loss + torch.utils.checkpoint.checkpoint(
|
972 |
+
create_custom_forward(self.lm_head),
|
973 |
+
hidden_states[batch_idx : batch_idx + 1, :],
|
974 |
+
labels[batch_idx : batch_idx + 1, :],
|
975 |
+
)
|
976 |
+
logits = None
|
977 |
+
else:
|
978 |
+
logits = self.lm_head(hidden_states)
|
979 |
+
logits = logits.float()
|
980 |
+
# Shift so that tokens < n predict n
|
981 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
982 |
+
shift_labels = labels[..., 1:].contiguous()
|
983 |
+
# Flatten the tokens
|
984 |
+
aux_loss, z_loss = self._calculate_router_loss()
|
985 |
+
loss = aux_loss + z_loss
|
986 |
+
loss = loss + self._calculate_loss(shift_logits, shift_labels)
|
987 |
+
|
988 |
+
if not return_dict:
|
989 |
+
output = (logits,) + outputs[1:]
|
990 |
+
return (loss,) + output if loss is not None else output
|
991 |
+
|
992 |
+
return CausalLMOutputWithPast(
|
993 |
+
loss=loss,
|
994 |
+
logits=logits,
|
995 |
+
past_key_values=outputs.past_key_values,
|
996 |
+
hidden_states=outputs.hidden_states,
|
997 |
+
attentions=outputs.attentions,
|
998 |
+
)
|
999 |
+
|
1000 |
+
def prepare_inputs_for_generation(
|
1001 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1002 |
+
):
|
1003 |
+
if past_key_values:
|
1004 |
+
input_ids = input_ids[:, -1:]
|
1005 |
+
|
1006 |
+
position_ids = kwargs.get("position_ids", None)
|
1007 |
+
if attention_mask is not None and position_ids is None:
|
1008 |
+
# create position_ids on the fly for batch generation
|
1009 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1010 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1011 |
+
if past_key_values:
|
1012 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
1013 |
+
|
1014 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1015 |
+
if inputs_embeds is not None and past_key_values is None:
|
1016 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1017 |
+
else:
|
1018 |
+
model_inputs = {"input_ids": input_ids}
|
1019 |
+
|
1020 |
+
model_inputs.update(
|
1021 |
+
{
|
1022 |
+
"position_ids": position_ids,
|
1023 |
+
"past_key_values": past_key_values,
|
1024 |
+
"use_cache": kwargs.get("use_cache"),
|
1025 |
+
"attention_mask": attention_mask,
|
1026 |
+
}
|
1027 |
+
)
|
1028 |
+
return model_inputs
|
1029 |
+
|
1030 |
+
@staticmethod
|
1031 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1032 |
+
reordered_past = ()
|
1033 |
+
for layer_past in past_key_values:
|
1034 |
+
reordered_past += (
|
1035 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1036 |
+
)
|
1037 |
+
return reordered_past
|
1038 |
+
|
1039 |
+
def _calculate_router_loss(self, aux_loss: list = None, z_loss: list = None):
|
1040 |
+
if aux_loss is None or z_loss is None:
|
1041 |
+
aux_loss, z_loss = MOE_MANAGER.get_loss()
|
1042 |
+
assert len(aux_loss) == len(z_loss) == self.config.num_hidden_layers // self.config.moe_layer_interval
|
1043 |
+
aux_loss = self.config.router_aux_loss_factor * sum(aux_loss) / len(aux_loss)
|
1044 |
+
z_loss = self.config.router_z_loss_factor * sum(z_loss) / len(z_loss)
|
1045 |
+
return aux_loss, z_loss
|
1046 |
+
|
1047 |
+
def _calculate_loss(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
|
1048 |
+
"""Compute cross entropy and entropy for log probs and targets.
|
1049 |
+
|
1050 |
+
Args:
|
1051 |
+
logits: [batch, length, num_classes] float array.
|
1052 |
+
targets: categorical targets [batch, length] int array.
|
1053 |
+
|
1054 |
+
Returns:
|
1055 |
+
Tuple of scalar loss.
|
1056 |
+
"""
|
1057 |
+
if len(logits.shape) != len(targets.shape) + 1:
|
1058 |
+
raise ValueError(
|
1059 |
+
"Incorrect shapes. Got shape %s logits and %s targets" % (str(logits.shape), str(targets.shape))
|
1060 |
+
)
|
1061 |
+
vocab_size = logits.shape[-1]
|
1062 |
+
confidence = 1.0 - self.config.label_smoothing
|
1063 |
+
low_confidence = (1.0 - confidence) / (vocab_size - 1)
|
1064 |
+
normalizing_constant = -(
|
1065 |
+
confidence * math.log(confidence) + (vocab_size - 1) * low_confidence * math.log(low_confidence + 1e-20)
|
1066 |
+
)
|
1067 |
+
|
1068 |
+
# one hot
|
1069 |
+
soft_targets = targets[..., None] == torch.arange(vocab_size, device=targets.device).reshape(
|
1070 |
+
(1,) * len(targets.shape) + (-1,)
|
1071 |
+
)
|
1072 |
+
soft_targets = torch.where(
|
1073 |
+
soft_targets, torch.full_like(soft_targets, confidence), torch.full_like(soft_targets, low_confidence)
|
1074 |
+
)
|
1075 |
+
soft_targets = soft_targets.to(torch.float32)
|
1076 |
+
|
1077 |
+
# cross entropy
|
1078 |
+
total_loss = ZLossCrossEntropy.apply(logits, soft_targets, self.config.z_loss_factor)
|
1079 |
+
total_loss = total_loss - normalizing_constant
|
1080 |
+
total_loss = torch.mean(torch.sum(total_loss, dim=-1), dim=0)
|
1081 |
+
return total_loss
|
1082 |
+
|
1083 |
+
|
1084 |
+
class ZLossCrossEntropy(torch.autograd.Function):
|
1085 |
+
"""Computes cross entropy loss with stable custom gradient.
|
1086 |
+
|
1087 |
+
Computes a stabilized-gradient version of:
|
1088 |
+
-jnp.sum(targets * nn.log_softmax(logits), axis=-1)
|
1089 |
+
|
1090 |
+
If z_loss > 0, then an auxiliary loss equal to z_loss*log(z)^2
|
1091 |
+
will be added to the cross entropy loss (z = softmax normalization constant).
|
1092 |
+
The two uses of z_loss are:
|
1093 |
+
1. To keep the logits from drifting too far from zero, which can cause
|
1094 |
+
unacceptable roundoff errors in bfloat16.
|
1095 |
+
2. To encourage the logits to be normalized log-probabilities.
|
1096 |
+
|
1097 |
+
Args:
|
1098 |
+
logits: [batch, length, num_classes] float array.
|
1099 |
+
targets: categorical one-hot targets [batch, length, num_classes] float
|
1100 |
+
array.
|
1101 |
+
z_loss: coefficient for auxilliary z-loss loss term.
|
1102 |
+
|
1103 |
+
Returns:
|
1104 |
+
tuple with the total loss and the z_loss, both
|
1105 |
+
float arrays with shape [batch, length].
|
1106 |
+
"""
|
1107 |
+
|
1108 |
+
@staticmethod
|
1109 |
+
def forward(ctx, logits, targets, z_loss):
|
1110 |
+
max_logit = torch.max(logits, dim=-1, keepdim=True)[0]
|
1111 |
+
shifted = logits - max_logit
|
1112 |
+
exp_shifted = torch.exp(shifted)
|
1113 |
+
sum_exp = torch.sum(exp_shifted, axis=-1, keepdims=True)
|
1114 |
+
sum_exp_log = torch.log(sum_exp)
|
1115 |
+
log_softmax = shifted - sum_exp_log
|
1116 |
+
loss = -torch.sum(targets * log_softmax, axis=-1)
|
1117 |
+
# Add auxilliary z-loss term.
|
1118 |
+
log_z = torch.squeeze(sum_exp_log + max_logit, axis=-1)
|
1119 |
+
total_z_loss = z_loss * torch.square(log_z)
|
1120 |
+
loss += total_z_loss
|
1121 |
+
ctx.z_loss = z_loss
|
1122 |
+
ctx.save_for_backward(logits, targets, exp_shifted, sum_exp, log_softmax, log_z)
|
1123 |
+
return loss
|
1124 |
+
|
1125 |
+
@staticmethod
|
1126 |
+
def backward(ctx, *grad_outputs):
|
1127 |
+
assert len(grad_outputs) == 1
|
1128 |
+
g = grad_outputs[0]
|
1129 |
+
z_loss = ctx.z_loss
|
1130 |
+
logits, targets, exp_shifted, sum_exp, log_softmax, log_z = ctx.saved_tensors
|
1131 |
+
# z-loss term adds the (2 * z_loss * log_z) factor.
|
1132 |
+
deriv = (1 + 2 * z_loss * log_z).unsqueeze(-1) * exp_shifted / sum_exp - targets
|
1133 |
+
g_logits = g.unsqueeze(-1) * deriv
|
1134 |
+
g_targets = -g.unsqueeze(-1) * log_softmax
|
1135 |
+
|
1136 |
+
return (
|
1137 |
+
g_logits.to(logits.dtype),
|
1138 |
+
g_targets.to(targets.dtype),
|
1139 |
+
None,
|
1140 |
+
)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<extra_id_0>",
|
4 |
+
"<extra_id_1>",
|
5 |
+
"<extra_id_2>",
|
6 |
+
"<extra_id_3>",
|
7 |
+
"<extra_id_4>",
|
8 |
+
"<extra_id_5>",
|
9 |
+
"<extra_id_6>",
|
10 |
+
"<extra_id_7>",
|
11 |
+
"<extra_id_8>",
|
12 |
+
"<extra_id_9>",
|
13 |
+
"<extra_id_10>",
|
14 |
+
"<extra_id_11>",
|
15 |
+
"<extra_id_12>",
|
16 |
+
"<extra_id_13>",
|
17 |
+
"<extra_id_14>",
|
18 |
+
"<extra_id_15>",
|
19 |
+
"<extra_id_16>",
|
20 |
+
"<extra_id_17>",
|
21 |
+
"<extra_id_18>",
|
22 |
+
"<extra_id_19>",
|
23 |
+
"<extra_id_20>",
|
24 |
+
"<extra_id_21>",
|
25 |
+
"<extra_id_22>",
|
26 |
+
"<extra_id_23>",
|
27 |
+
"<extra_id_24>",
|
28 |
+
"<extra_id_25>",
|
29 |
+
"<extra_id_26>",
|
30 |
+
"<extra_id_27>",
|
31 |
+
"<extra_id_28>",
|
32 |
+
"<extra_id_29>",
|
33 |
+
"<extra_id_30>",
|
34 |
+
"<extra_id_31>",
|
35 |
+
"<extra_id_32>",
|
36 |
+
"<extra_id_33>",
|
37 |
+
"<extra_id_34>",
|
38 |
+
"<extra_id_35>",
|
39 |
+
"<extra_id_36>",
|
40 |
+
"<extra_id_37>",
|
41 |
+
"<extra_id_38>",
|
42 |
+
"<extra_id_39>",
|
43 |
+
"<extra_id_40>",
|
44 |
+
"<extra_id_41>",
|
45 |
+
"<extra_id_42>",
|
46 |
+
"<extra_id_43>",
|
47 |
+
"<extra_id_44>",
|
48 |
+
"<extra_id_45>",
|
49 |
+
"<extra_id_46>",
|
50 |
+
"<extra_id_47>",
|
51 |
+
"<extra_id_48>",
|
52 |
+
"<extra_id_49>",
|
53 |
+
"<extra_id_50>",
|
54 |
+
"<extra_id_51>",
|
55 |
+
"<extra_id_52>",
|
56 |
+
"<extra_id_53>",
|
57 |
+
"<extra_id_54>",
|
58 |
+
"<extra_id_55>",
|
59 |
+
"<extra_id_56>",
|
60 |
+
"<extra_id_57>",
|
61 |
+
"<extra_id_58>",
|
62 |
+
"<extra_id_59>",
|
63 |
+
"<extra_id_60>",
|
64 |
+
"<extra_id_61>",
|
65 |
+
"<extra_id_62>",
|
66 |
+
"<extra_id_63>",
|
67 |
+
"<extra_id_64>",
|
68 |
+
"<extra_id_65>",
|
69 |
+
"<extra_id_66>",
|
70 |
+
"<extra_id_67>",
|
71 |
+
"<extra_id_68>",
|
72 |
+
"<extra_id_69>",
|
73 |
+
"<extra_id_70>",
|
74 |
+
"<extra_id_71>",
|
75 |
+
"<extra_id_72>",
|
76 |
+
"<extra_id_73>",
|
77 |
+
"<extra_id_74>",
|
78 |
+
"<extra_id_75>",
|
79 |
+
"<extra_id_76>",
|
80 |
+
"<extra_id_77>",
|
81 |
+
"<extra_id_78>",
|
82 |
+
"<extra_id_79>",
|
83 |
+
"<extra_id_80>",
|
84 |
+
"<extra_id_81>",
|
85 |
+
"<extra_id_82>",
|
86 |
+
"<extra_id_83>",
|
87 |
+
"<extra_id_84>",
|
88 |
+
"<extra_id_85>",
|
89 |
+
"<extra_id_86>",
|
90 |
+
"<extra_id_87>",
|
91 |
+
"<extra_id_88>",
|
92 |
+
"<extra_id_89>",
|
93 |
+
"<extra_id_90>",
|
94 |
+
"<extra_id_91>",
|
95 |
+
"<extra_id_92>",
|
96 |
+
"<extra_id_93>",
|
97 |
+
"<extra_id_94>",
|
98 |
+
"<extra_id_95>",
|
99 |
+
"<extra_id_96>",
|
100 |
+
"<extra_id_97>",
|
101 |
+
"<extra_id_98>",
|
102 |
+
"<extra_id_99>",
|
103 |
+
"<extra_id_100>",
|
104 |
+
"<extra_id_101>",
|
105 |
+
"<extra_id_102>",
|
106 |
+
"<extra_id_103>",
|
107 |
+
"<extra_id_104>",
|
108 |
+
"<extra_id_105>",
|
109 |
+
"<extra_id_106>",
|
110 |
+
"<extra_id_107>",
|
111 |
+
"<extra_id_108>",
|
112 |
+
"<extra_id_109>",
|
113 |
+
"<extra_id_110>",
|
114 |
+
"<extra_id_111>",
|
115 |
+
"<extra_id_112>",
|
116 |
+
"<extra_id_113>",
|
117 |
+
"<extra_id_114>",
|
118 |
+
"<extra_id_115>",
|
119 |
+
"<extra_id_116>",
|
120 |
+
"<extra_id_117>",
|
121 |
+
"<extra_id_118>",
|
122 |
+
"<extra_id_119>",
|
123 |
+
"<extra_id_120>",
|
124 |
+
"<extra_id_121>",
|
125 |
+
"<extra_id_122>",
|
126 |
+
"<extra_id_123>",
|
127 |
+
"<extra_id_124>",
|
128 |
+
"<extra_id_125>",
|
129 |
+
"<extra_id_126>",
|
130 |
+
"<extra_id_127>",
|
131 |
+
"<extra_id_128>",
|
132 |
+
"<extra_id_129>",
|
133 |
+
"<extra_id_130>",
|
134 |
+
"<extra_id_131>",
|
135 |
+
"<extra_id_132>",
|
136 |
+
"<extra_id_133>",
|
137 |
+
"<extra_id_134>",
|
138 |
+
"<extra_id_135>",
|
139 |
+
"<extra_id_136>",
|
140 |
+
"<extra_id_137>",
|
141 |
+
"<extra_id_138>",
|
142 |
+
"<extra_id_139>",
|
143 |
+
"<extra_id_140>",
|
144 |
+
"<extra_id_141>",
|
145 |
+
"<extra_id_142>",
|
146 |
+
"<extra_id_143>",
|
147 |
+
"<extra_id_144>",
|
148 |
+
"<extra_id_145>",
|
149 |
+
"<extra_id_146>",
|
150 |
+
"<extra_id_147>",
|
151 |
+
"<extra_id_148>",
|
152 |
+
"<extra_id_149>",
|
153 |
+
"<extra_id_150>",
|
154 |
+
"<extra_id_151>",
|
155 |
+
"<extra_id_152>",
|
156 |
+
"<extra_id_153>",
|
157 |
+
"<extra_id_154>",
|
158 |
+
"<extra_id_155>",
|
159 |
+
"<extra_id_156>",
|
160 |
+
"<extra_id_157>",
|
161 |
+
"<extra_id_158>",
|
162 |
+
"<extra_id_159>",
|
163 |
+
"<extra_id_160>",
|
164 |
+
"<extra_id_161>",
|
165 |
+
"<extra_id_162>",
|
166 |
+
"<extra_id_163>",
|
167 |
+
"<extra_id_164>",
|
168 |
+
"<extra_id_165>",
|
169 |
+
"<extra_id_166>",
|
170 |
+
"<extra_id_167>",
|
171 |
+
"<extra_id_168>",
|
172 |
+
"<extra_id_169>",
|
173 |
+
"<extra_id_170>",
|
174 |
+
"<extra_id_171>",
|
175 |
+
"<extra_id_172>",
|
176 |
+
"<extra_id_173>",
|
177 |
+
"<extra_id_174>",
|
178 |
+
"<extra_id_175>",
|
179 |
+
"<extra_id_176>",
|
180 |
+
"<extra_id_177>",
|
181 |
+
"<extra_id_178>",
|
182 |
+
"<extra_id_179>",
|
183 |
+
"<extra_id_180>",
|
184 |
+
"<extra_id_181>",
|
185 |
+
"<extra_id_182>",
|
186 |
+
"<extra_id_183>",
|
187 |
+
"<extra_id_184>",
|
188 |
+
"<extra_id_185>",
|
189 |
+
"<extra_id_186>",
|
190 |
+
"<extra_id_187>",
|
191 |
+
"<extra_id_188>",
|
192 |
+
"<extra_id_189>",
|
193 |
+
"<extra_id_190>",
|
194 |
+
"<extra_id_191>",
|
195 |
+
"<extra_id_192>",
|
196 |
+
"<extra_id_193>",
|
197 |
+
"<extra_id_194>",
|
198 |
+
"<extra_id_195>",
|
199 |
+
"<extra_id_196>",
|
200 |
+
"<extra_id_197>",
|
201 |
+
"<extra_id_198>",
|
202 |
+
"<extra_id_199>",
|
203 |
+
"<extra_id_200>",
|
204 |
+
"<extra_id_201>",
|
205 |
+
"<extra_id_202>",
|
206 |
+
"<extra_id_203>",
|
207 |
+
"<extra_id_204>",
|
208 |
+
"<extra_id_205>",
|
209 |
+
"<extra_id_206>",
|
210 |
+
"<extra_id_207>",
|
211 |
+
"<extra_id_208>",
|
212 |
+
"<extra_id_209>",
|
213 |
+
"<extra_id_210>",
|
214 |
+
"<extra_id_211>",
|
215 |
+
"<extra_id_212>",
|
216 |
+
"<extra_id_213>",
|
217 |
+
"<extra_id_214>",
|
218 |
+
"<extra_id_215>",
|
219 |
+
"<extra_id_216>",
|
220 |
+
"<extra_id_217>",
|
221 |
+
"<extra_id_218>",
|
222 |
+
"<extra_id_219>",
|
223 |
+
"<extra_id_220>",
|
224 |
+
"<extra_id_221>",
|
225 |
+
"<extra_id_222>",
|
226 |
+
"<extra_id_223>",
|
227 |
+
"<extra_id_224>",
|
228 |
+
"<extra_id_225>",
|
229 |
+
"<extra_id_226>",
|
230 |
+
"<extra_id_227>",
|
231 |
+
"<extra_id_228>",
|
232 |
+
"<extra_id_229>",
|
233 |
+
"<extra_id_230>",
|
234 |
+
"<extra_id_231>",
|
235 |
+
"<extra_id_232>",
|
236 |
+
"<extra_id_233>",
|
237 |
+
"<extra_id_234>",
|
238 |
+
"<extra_id_235>",
|
239 |
+
"<extra_id_236>",
|
240 |
+
"<extra_id_237>",
|
241 |
+
"<extra_id_238>",
|
242 |
+
"<extra_id_239>",
|
243 |
+
"<extra_id_240>",
|
244 |
+
"<extra_id_241>",
|
245 |
+
"<extra_id_242>",
|
246 |
+
"<extra_id_243>",
|
247 |
+
"<extra_id_244>",
|
248 |
+
"<extra_id_245>",
|
249 |
+
"<extra_id_246>",
|
250 |
+
"<extra_id_247>",
|
251 |
+
"<extra_id_248>",
|
252 |
+
"<extra_id_249>",
|
253 |
+
"<extra_id_250>",
|
254 |
+
"<extra_id_251>",
|
255 |
+
"<extra_id_252>",
|
256 |
+
"<extra_id_253>",
|
257 |
+
"<extra_id_254>",
|
258 |
+
"<extra_id_255>",
|
259 |
+
"<extra_id_256>",
|
260 |
+
"<extra_id_257>",
|
261 |
+
"<extra_id_258>",
|
262 |
+
"<extra_id_259>",
|
263 |
+
"<extra_id_260>",
|
264 |
+
"<extra_id_261>",
|
265 |
+
"<extra_id_262>",
|
266 |
+
"<extra_id_263>",
|
267 |
+
"<extra_id_264>",
|
268 |
+
"<extra_id_265>",
|
269 |
+
"<extra_id_266>",
|
270 |
+
"<extra_id_267>",
|
271 |
+
"<extra_id_268>",
|
272 |
+
"<extra_id_269>",
|
273 |
+
"<extra_id_270>",
|
274 |
+
"<extra_id_271>",
|
275 |
+
"<extra_id_272>",
|
276 |
+
"<extra_id_273>",
|
277 |
+
"<extra_id_274>",
|
278 |
+
"<extra_id_275>",
|
279 |
+
"<extra_id_276>",
|
280 |
+
"<extra_id_277>",
|
281 |
+
"<extra_id_278>",
|
282 |
+
"<extra_id_279>",
|
283 |
+
"<extra_id_280>",
|
284 |
+
"<extra_id_281>",
|
285 |
+
"<extra_id_282>",
|
286 |
+
"<extra_id_283>",
|
287 |
+
"<extra_id_284>",
|
288 |
+
"<extra_id_285>",
|
289 |
+
"<extra_id_286>",
|
290 |
+
"<extra_id_287>",
|
291 |
+
"<extra_id_288>",
|
292 |
+
"<extra_id_289>",
|
293 |
+
"<extra_id_290>",
|
294 |
+
"<extra_id_291>",
|
295 |
+
"<extra_id_292>",
|
296 |
+
"<extra_id_293>",
|
297 |
+
"<extra_id_294>",
|
298 |
+
"<extra_id_295>",
|
299 |
+
"<extra_id_296>",
|
300 |
+
"<extra_id_297>",
|
301 |
+
"<extra_id_298>",
|
302 |
+
"<extra_id_299>"
|
303 |
+
],
|
304 |
+
"bos_token": "<s>",
|
305 |
+
"eos_token": "</s>",
|
306 |
+
"pad_token": "<pad>",
|
307 |
+
"unk_token": "<unk>"
|
308 |
+
}
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3909a67b780650b35cf529ac782ad2b6b26e6d1f849d3fbb6a872905f452458
|
3 |
+
size 4548313
|
tokenization_openmoe.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import T5Tokenizer
|
2 |
+
from typing import List, Optional, Tuple, Union
|
3 |
+
|
4 |
+
class OpenMoeTokenizer(T5Tokenizer):
|
5 |
+
def __init__(self, *args, **kwargs):
|
6 |
+
super().__init__(*args, **kwargs)
|
7 |
+
self.padding_side = 'left'
|
8 |
+
self.add_bos_token = True
|
9 |
+
self.add_eos_token = False
|
10 |
+
|
11 |
+
def build_inputs_with_special_tokens(
|
12 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
13 |
+
) -> List[int]:
|
14 |
+
if self.add_eos_token:
|
15 |
+
token_ids_0 = self._add_eos_if_not_present(token_ids_0)
|
16 |
+
if self.add_bos_token:
|
17 |
+
token_ids_0 = [self.pad_token_id] + token_ids_0
|
18 |
+
if token_ids_1 is None:
|
19 |
+
return token_ids_0
|
20 |
+
else:
|
21 |
+
token_ids_1 = self._add_eos_if_not_present(token_ids_1)
|
22 |
+
return token_ids_0 + token_ids_1
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af904105ce1071b1202bba0059a841f4a7b85b48b6ec179c4948e3483476e0dd
|
3 |
+
size 16853013
|
tokenizer_config.json
ADDED
@@ -0,0 +1,2757 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<pad>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": false
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "</s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": false
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "<s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": false
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": false
|
34 |
+
},
|
35 |
+
"256000": {
|
36 |
+
"content": "<extra_id_299>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": false
|
42 |
+
},
|
43 |
+
"256001": {
|
44 |
+
"content": "<extra_id_298>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": false
|
50 |
+
},
|
51 |
+
"256002": {
|
52 |
+
"content": "<extra_id_297>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": false
|
58 |
+
},
|
59 |
+
"256003": {
|
60 |
+
"content": "<extra_id_296>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": false
|
66 |
+
},
|
67 |
+
"256004": {
|
68 |
+
"content": "<extra_id_295>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": false
|
74 |
+
},
|
75 |
+
"256005": {
|
76 |
+
"content": "<extra_id_294>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": false
|
82 |
+
},
|
83 |
+
"256006": {
|
84 |
+
"content": "<extra_id_293>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": false
|
90 |
+
},
|
91 |
+
"256007": {
|
92 |
+
"content": "<extra_id_292>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": false
|
98 |
+
},
|
99 |
+
"256008": {
|
100 |
+
"content": "<extra_id_291>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": false
|
106 |
+
},
|
107 |
+
"256009": {
|
108 |
+
"content": "<extra_id_290>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": false
|
114 |
+
},
|
115 |
+
"256010": {
|
116 |
+
"content": "<extra_id_289>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": false
|
122 |
+
},
|
123 |
+
"256011": {
|
124 |
+
"content": "<extra_id_288>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": false
|
130 |
+
},
|
131 |
+
"256012": {
|
132 |
+
"content": "<extra_id_287>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": false
|
138 |
+
},
|
139 |
+
"256013": {
|
140 |
+
"content": "<extra_id_286>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": false
|
146 |
+
},
|
147 |
+
"256014": {
|
148 |
+
"content": "<extra_id_285>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": false
|
154 |
+
},
|
155 |
+
"256015": {
|
156 |
+
"content": "<extra_id_284>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": false
|
162 |
+
},
|
163 |
+
"256016": {
|
164 |
+
"content": "<extra_id_283>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": false
|
170 |
+
},
|
171 |
+
"256017": {
|
172 |
+
"content": "<extra_id_282>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": false
|
178 |
+
},
|
179 |
+
"256018": {
|
180 |
+
"content": "<extra_id_281>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": false
|
186 |
+
},
|
187 |
+
"256019": {
|
188 |
+
"content": "<extra_id_280>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": false
|
194 |
+
},
|
195 |
+
"256020": {
|
196 |
+
"content": "<extra_id_279>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": false
|
202 |
+
},
|
203 |
+
"256021": {
|
204 |
+
"content": "<extra_id_278>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": false
|
210 |
+
},
|
211 |
+
"256022": {
|
212 |
+
"content": "<extra_id_277>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": false
|
218 |
+
},
|
219 |
+
"256023": {
|
220 |
+
"content": "<extra_id_276>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": false
|
226 |
+
},
|
227 |
+
"256024": {
|
228 |
+
"content": "<extra_id_275>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": false
|
234 |
+
},
|
235 |
+
"256025": {
|
236 |
+
"content": "<extra_id_274>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": false
|
242 |
+
},
|
243 |
+
"256026": {
|
244 |
+
"content": "<extra_id_273>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": false
|
250 |
+
},
|
251 |
+
"256027": {
|
252 |
+
"content": "<extra_id_272>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": false
|
258 |
+
},
|
259 |
+
"256028": {
|
260 |
+
"content": "<extra_id_271>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": false
|
266 |
+
},
|
267 |
+
"256029": {
|
268 |
+
"content": "<extra_id_270>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": false
|
274 |
+
},
|
275 |
+
"256030": {
|
276 |
+
"content": "<extra_id_269>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": false
|
282 |
+
},
|
283 |
+
"256031": {
|
284 |
+
"content": "<extra_id_268>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": false
|
290 |
+
},
|
291 |
+
"256032": {
|
292 |
+
"content": "<extra_id_267>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": false
|
298 |
+
},
|
299 |
+
"256033": {
|
300 |
+
"content": "<extra_id_266>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": false
|
306 |
+
},
|
307 |
+
"256034": {
|
308 |
+
"content": "<extra_id_265>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": false
|
314 |
+
},
|
315 |
+
"256035": {
|
316 |
+
"content": "<extra_id_264>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": false
|
322 |
+
},
|
323 |
+
"256036": {
|
324 |
+
"content": "<extra_id_263>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": false
|
330 |
+
},
|
331 |
+
"256037": {
|
332 |
+
"content": "<extra_id_262>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": false
|
338 |
+
},
|
339 |
+
"256038": {
|
340 |
+
"content": "<extra_id_261>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": false
|
346 |
+
},
|
347 |
+
"256039": {
|
348 |
+
"content": "<extra_id_260>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": false
|
354 |
+
},
|
355 |
+
"256040": {
|
356 |
+
"content": "<extra_id_259>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": false
|
362 |
+
},
|
363 |
+
"256041": {
|
364 |
+
"content": "<extra_id_258>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": false
|
370 |
+
},
|
371 |
+
"256042": {
|
372 |
+
"content": "<extra_id_257>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": false
|
378 |
+
},
|
379 |
+
"256043": {
|
380 |
+
"content": "<extra_id_256>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": false
|
386 |
+
},
|
387 |
+
"256044": {
|
388 |
+
"content": "<extra_id_255>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": false
|
394 |
+
},
|
395 |
+
"256045": {
|
396 |
+
"content": "<extra_id_254>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": false
|
402 |
+
},
|
403 |
+
"256046": {
|
404 |
+
"content": "<extra_id_253>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": false
|
410 |
+
},
|
411 |
+
"256047": {
|
412 |
+
"content": "<extra_id_252>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": false
|
418 |
+
},
|
419 |
+
"256048": {
|
420 |
+
"content": "<extra_id_251>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": false
|
426 |
+
},
|
427 |
+
"256049": {
|
428 |
+
"content": "<extra_id_250>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": false
|
434 |
+
},
|
435 |
+
"256050": {
|
436 |
+
"content": "<extra_id_249>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": false
|
442 |
+
},
|
443 |
+
"256051": {
|
444 |
+
"content": "<extra_id_248>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": false
|
450 |
+
},
|
451 |
+
"256052": {
|
452 |
+
"content": "<extra_id_247>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": false
|
458 |
+
},
|
459 |
+
"256053": {
|
460 |
+
"content": "<extra_id_246>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": false
|
466 |
+
},
|
467 |
+
"256054": {
|
468 |
+
"content": "<extra_id_245>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": false
|
474 |
+
},
|
475 |
+
"256055": {
|
476 |
+
"content": "<extra_id_244>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": false
|
482 |
+
},
|
483 |
+
"256056": {
|
484 |
+
"content": "<extra_id_243>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": false
|
490 |
+
},
|
491 |
+
"256057": {
|
492 |
+
"content": "<extra_id_242>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": false
|
498 |
+
},
|
499 |
+
"256058": {
|
500 |
+
"content": "<extra_id_241>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": false
|
506 |
+
},
|
507 |
+
"256059": {
|
508 |
+
"content": "<extra_id_240>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": false
|
514 |
+
},
|
515 |
+
"256060": {
|
516 |
+
"content": "<extra_id_239>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": false
|
522 |
+
},
|
523 |
+
"256061": {
|
524 |
+
"content": "<extra_id_238>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": false
|
530 |
+
},
|
531 |
+
"256062": {
|
532 |
+
"content": "<extra_id_237>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": false
|
538 |
+
},
|
539 |
+
"256063": {
|
540 |
+
"content": "<extra_id_236>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": false
|
546 |
+
},
|
547 |
+
"256064": {
|
548 |
+
"content": "<extra_id_235>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": false
|
554 |
+
},
|
555 |
+
"256065": {
|
556 |
+
"content": "<extra_id_234>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": false
|
562 |
+
},
|
563 |
+
"256066": {
|
564 |
+
"content": "<extra_id_233>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": false
|
570 |
+
},
|
571 |
+
"256067": {
|
572 |
+
"content": "<extra_id_232>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": false
|
578 |
+
},
|
579 |
+
"256068": {
|
580 |
+
"content": "<extra_id_231>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": false
|
586 |
+
},
|
587 |
+
"256069": {
|
588 |
+
"content": "<extra_id_230>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": false
|
594 |
+
},
|
595 |
+
"256070": {
|
596 |
+
"content": "<extra_id_229>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": false
|
602 |
+
},
|
603 |
+
"256071": {
|
604 |
+
"content": "<extra_id_228>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": false
|
610 |
+
},
|
611 |
+
"256072": {
|
612 |
+
"content": "<extra_id_227>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": false
|
618 |
+
},
|
619 |
+
"256073": {
|
620 |
+
"content": "<extra_id_226>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": false
|
626 |
+
},
|
627 |
+
"256074": {
|
628 |
+
"content": "<extra_id_225>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": false
|
634 |
+
},
|
635 |
+
"256075": {
|
636 |
+
"content": "<extra_id_224>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": false
|
642 |
+
},
|
643 |
+
"256076": {
|
644 |
+
"content": "<extra_id_223>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": false
|
650 |
+
},
|
651 |
+
"256077": {
|
652 |
+
"content": "<extra_id_222>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": false
|
658 |
+
},
|
659 |
+
"256078": {
|
660 |
+
"content": "<extra_id_221>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": false
|
666 |
+
},
|
667 |
+
"256079": {
|
668 |
+
"content": "<extra_id_220>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": false
|
674 |
+
},
|
675 |
+
"256080": {
|
676 |
+
"content": "<extra_id_219>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": false
|
682 |
+
},
|
683 |
+
"256081": {
|
684 |
+
"content": "<extra_id_218>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": false
|
690 |
+
},
|
691 |
+
"256082": {
|
692 |
+
"content": "<extra_id_217>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": false
|
698 |
+
},
|
699 |
+
"256083": {
|
700 |
+
"content": "<extra_id_216>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": false
|
706 |
+
},
|
707 |
+
"256084": {
|
708 |
+
"content": "<extra_id_215>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": false
|
714 |
+
},
|
715 |
+
"256085": {
|
716 |
+
"content": "<extra_id_214>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": false
|
722 |
+
},
|
723 |
+
"256086": {
|
724 |
+
"content": "<extra_id_213>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": false
|
730 |
+
},
|
731 |
+
"256087": {
|
732 |
+
"content": "<extra_id_212>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": false
|
738 |
+
},
|
739 |
+
"256088": {
|
740 |
+
"content": "<extra_id_211>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": false
|
746 |
+
},
|
747 |
+
"256089": {
|
748 |
+
"content": "<extra_id_210>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": false
|
754 |
+
},
|
755 |
+
"256090": {
|
756 |
+
"content": "<extra_id_209>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": false
|
762 |
+
},
|
763 |
+
"256091": {
|
764 |
+
"content": "<extra_id_208>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": false
|
770 |
+
},
|
771 |
+
"256092": {
|
772 |
+
"content": "<extra_id_207>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": false
|
778 |
+
},
|
779 |
+
"256093": {
|
780 |
+
"content": "<extra_id_206>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": false
|
786 |
+
},
|
787 |
+
"256094": {
|
788 |
+
"content": "<extra_id_205>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": false
|
794 |
+
},
|
795 |
+
"256095": {
|
796 |
+
"content": "<extra_id_204>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": false
|
802 |
+
},
|
803 |
+
"256096": {
|
804 |
+
"content": "<extra_id_203>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": false
|
810 |
+
},
|
811 |
+
"256097": {
|
812 |
+
"content": "<extra_id_202>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": false
|
818 |
+
},
|
819 |
+
"256098": {
|
820 |
+
"content": "<extra_id_201>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": false
|
826 |
+
},
|
827 |
+
"256099": {
|
828 |
+
"content": "<extra_id_200>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": false
|
834 |
+
},
|
835 |
+
"256100": {
|
836 |
+
"content": "<extra_id_199>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": false
|
842 |
+
},
|
843 |
+
"256101": {
|
844 |
+
"content": "<extra_id_198>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": false
|
850 |
+
},
|
851 |
+
"256102": {
|
852 |
+
"content": "<extra_id_197>",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": false
|
858 |
+
},
|
859 |
+
"256103": {
|
860 |
+
"content": "<extra_id_196>",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": false,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": false
|
866 |
+
},
|
867 |
+
"256104": {
|
868 |
+
"content": "<extra_id_195>",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": false,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": false
|
874 |
+
},
|
875 |
+
"256105": {
|
876 |
+
"content": "<extra_id_194>",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": false,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": false
|
882 |
+
},
|
883 |
+
"256106": {
|
884 |
+
"content": "<extra_id_193>",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": false,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": false
|
890 |
+
},
|
891 |
+
"256107": {
|
892 |
+
"content": "<extra_id_192>",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": false,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": false
|
898 |
+
},
|
899 |
+
"256108": {
|
900 |
+
"content": "<extra_id_191>",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": false
|
906 |
+
},
|
907 |
+
"256109": {
|
908 |
+
"content": "<extra_id_190>",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": false,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": false
|
914 |
+
},
|
915 |
+
"256110": {
|
916 |
+
"content": "<extra_id_189>",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": false,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": false
|
922 |
+
},
|
923 |
+
"256111": {
|
924 |
+
"content": "<extra_id_188>",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": false,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": false
|
930 |
+
},
|
931 |
+
"256112": {
|
932 |
+
"content": "<extra_id_187>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": false
|
938 |
+
},
|
939 |
+
"256113": {
|
940 |
+
"content": "<extra_id_186>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": false
|
946 |
+
},
|
947 |
+
"256114": {
|
948 |
+
"content": "<extra_id_185>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": false
|
954 |
+
},
|
955 |
+
"256115": {
|
956 |
+
"content": "<extra_id_184>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": false
|
962 |
+
},
|
963 |
+
"256116": {
|
964 |
+
"content": "<extra_id_183>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": false
|
970 |
+
},
|
971 |
+
"256117": {
|
972 |
+
"content": "<extra_id_182>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": false
|
978 |
+
},
|
979 |
+
"256118": {
|
980 |
+
"content": "<extra_id_181>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": false
|
986 |
+
},
|
987 |
+
"256119": {
|
988 |
+
"content": "<extra_id_180>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": false
|
994 |
+
},
|
995 |
+
"256120": {
|
996 |
+
"content": "<extra_id_179>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": false
|
1002 |
+
},
|
1003 |
+
"256121": {
|
1004 |
+
"content": "<extra_id_178>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": false
|
1010 |
+
},
|
1011 |
+
"256122": {
|
1012 |
+
"content": "<extra_id_177>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": false
|
1018 |
+
},
|
1019 |
+
"256123": {
|
1020 |
+
"content": "<extra_id_176>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": false
|
1026 |
+
},
|
1027 |
+
"256124": {
|
1028 |
+
"content": "<extra_id_175>",
|
1029 |
+
"lstrip": false,
|
1030 |
+
"normalized": false,
|
1031 |
+
"rstrip": false,
|
1032 |
+
"single_word": false,
|
1033 |
+
"special": false
|
1034 |
+
},
|
1035 |
+
"256125": {
|
1036 |
+
"content": "<extra_id_174>",
|
1037 |
+
"lstrip": false,
|
1038 |
+
"normalized": false,
|
1039 |
+
"rstrip": false,
|
1040 |
+
"single_word": false,
|
1041 |
+
"special": false
|
1042 |
+
},
|
1043 |
+
"256126": {
|
1044 |
+
"content": "<extra_id_173>",
|
1045 |
+
"lstrip": false,
|
1046 |
+
"normalized": false,
|
1047 |
+
"rstrip": false,
|
1048 |
+
"single_word": false,
|
1049 |
+
"special": false
|
1050 |
+
},
|
1051 |
+
"256127": {
|
1052 |
+
"content": "<extra_id_172>",
|
1053 |
+
"lstrip": false,
|
1054 |
+
"normalized": false,
|
1055 |
+
"rstrip": false,
|
1056 |
+
"single_word": false,
|
1057 |
+
"special": false
|
1058 |
+
},
|
1059 |
+
"256128": {
|
1060 |
+
"content": "<extra_id_171>",
|
1061 |
+
"lstrip": false,
|
1062 |
+
"normalized": false,
|
1063 |
+
"rstrip": false,
|
1064 |
+
"single_word": false,
|
1065 |
+
"special": false
|
1066 |
+
},
|
1067 |
+
"256129": {
|
1068 |
+
"content": "<extra_id_170>",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false,
|
1073 |
+
"special": false
|
1074 |
+
},
|
1075 |
+
"256130": {
|
1076 |
+
"content": "<extra_id_169>",
|
1077 |
+
"lstrip": false,
|
1078 |
+
"normalized": false,
|
1079 |
+
"rstrip": false,
|
1080 |
+
"single_word": false,
|
1081 |
+
"special": false
|
1082 |
+
},
|
1083 |
+
"256131": {
|
1084 |
+
"content": "<extra_id_168>",
|
1085 |
+
"lstrip": false,
|
1086 |
+
"normalized": false,
|
1087 |
+
"rstrip": false,
|
1088 |
+
"single_word": false,
|
1089 |
+
"special": false
|
1090 |
+
},
|
1091 |
+
"256132": {
|
1092 |
+
"content": "<extra_id_167>",
|
1093 |
+
"lstrip": false,
|
1094 |
+
"normalized": false,
|
1095 |
+
"rstrip": false,
|
1096 |
+
"single_word": false,
|
1097 |
+
"special": false
|
1098 |
+
},
|
1099 |
+
"256133": {
|
1100 |
+
"content": "<extra_id_166>",
|
1101 |
+
"lstrip": false,
|
1102 |
+
"normalized": false,
|
1103 |
+
"rstrip": false,
|
1104 |
+
"single_word": false,
|
1105 |
+
"special": false
|
1106 |
+
},
|
1107 |
+
"256134": {
|
1108 |
+
"content": "<extra_id_165>",
|
1109 |
+
"lstrip": false,
|
1110 |
+
"normalized": false,
|
1111 |
+
"rstrip": false,
|
1112 |
+
"single_word": false,
|
1113 |
+
"special": false
|
1114 |
+
},
|
1115 |
+
"256135": {
|
1116 |
+
"content": "<extra_id_164>",
|
1117 |
+
"lstrip": false,
|
1118 |
+
"normalized": false,
|
1119 |
+
"rstrip": false,
|
1120 |
+
"single_word": false,
|
1121 |
+
"special": false
|
1122 |
+
},
|
1123 |
+
"256136": {
|
1124 |
+
"content": "<extra_id_163>",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false,
|
1129 |
+
"special": false
|
1130 |
+
},
|
1131 |
+
"256137": {
|
1132 |
+
"content": "<extra_id_162>",
|
1133 |
+
"lstrip": false,
|
1134 |
+
"normalized": false,
|
1135 |
+
"rstrip": false,
|
1136 |
+
"single_word": false,
|
1137 |
+
"special": false
|
1138 |
+
},
|
1139 |
+
"256138": {
|
1140 |
+
"content": "<extra_id_161>",
|
1141 |
+
"lstrip": false,
|
1142 |
+
"normalized": false,
|
1143 |
+
"rstrip": false,
|
1144 |
+
"single_word": false,
|
1145 |
+
"special": false
|
1146 |
+
},
|
1147 |
+
"256139": {
|
1148 |
+
"content": "<extra_id_160>",
|
1149 |
+
"lstrip": false,
|
1150 |
+
"normalized": false,
|
1151 |
+
"rstrip": false,
|
1152 |
+
"single_word": false,
|
1153 |
+
"special": false
|
1154 |
+
},
|
1155 |
+
"256140": {
|
1156 |
+
"content": "<extra_id_159>",
|
1157 |
+
"lstrip": false,
|
1158 |
+
"normalized": false,
|
1159 |
+
"rstrip": false,
|
1160 |
+
"single_word": false,
|
1161 |
+
"special": false
|
1162 |
+
},
|
1163 |
+
"256141": {
|
1164 |
+
"content": "<extra_id_158>",
|
1165 |
+
"lstrip": false,
|
1166 |
+
"normalized": false,
|
1167 |
+
"rstrip": false,
|
1168 |
+
"single_word": false,
|
1169 |
+
"special": false
|
1170 |
+
},
|
1171 |
+
"256142": {
|
1172 |
+
"content": "<extra_id_157>",
|
1173 |
+
"lstrip": false,
|
1174 |
+
"normalized": false,
|
1175 |
+
"rstrip": false,
|
1176 |
+
"single_word": false,
|
1177 |
+
"special": false
|
1178 |
+
},
|
1179 |
+
"256143": {
|
1180 |
+
"content": "<extra_id_156>",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false,
|
1185 |
+
"special": false
|
1186 |
+
},
|
1187 |
+
"256144": {
|
1188 |
+
"content": "<extra_id_155>",
|
1189 |
+
"lstrip": false,
|
1190 |
+
"normalized": false,
|
1191 |
+
"rstrip": false,
|
1192 |
+
"single_word": false,
|
1193 |
+
"special": false
|
1194 |
+
},
|
1195 |
+
"256145": {
|
1196 |
+
"content": "<extra_id_154>",
|
1197 |
+
"lstrip": false,
|
1198 |
+
"normalized": false,
|
1199 |
+
"rstrip": false,
|
1200 |
+
"single_word": false,
|
1201 |
+
"special": false
|
1202 |
+
},
|
1203 |
+
"256146": {
|
1204 |
+
"content": "<extra_id_153>",
|
1205 |
+
"lstrip": false,
|
1206 |
+
"normalized": false,
|
1207 |
+
"rstrip": false,
|
1208 |
+
"single_word": false,
|
1209 |
+
"special": false
|
1210 |
+
},
|
1211 |
+
"256147": {
|
1212 |
+
"content": "<extra_id_152>",
|
1213 |
+
"lstrip": false,
|
1214 |
+
"normalized": false,
|
1215 |
+
"rstrip": false,
|
1216 |
+
"single_word": false,
|
1217 |
+
"special": false
|
1218 |
+
},
|
1219 |
+
"256148": {
|
1220 |
+
"content": "<extra_id_151>",
|
1221 |
+
"lstrip": false,
|
1222 |
+
"normalized": false,
|
1223 |
+
"rstrip": false,
|
1224 |
+
"single_word": false,
|
1225 |
+
"special": false
|
1226 |
+
},
|
1227 |
+
"256149": {
|
1228 |
+
"content": "<extra_id_150>",
|
1229 |
+
"lstrip": false,
|
1230 |
+
"normalized": false,
|
1231 |
+
"rstrip": false,
|
1232 |
+
"single_word": false,
|
1233 |
+
"special": false
|
1234 |
+
},
|
1235 |
+
"256150": {
|
1236 |
+
"content": "<extra_id_149>",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false,
|
1241 |
+
"special": false
|
1242 |
+
},
|
1243 |
+
"256151": {
|
1244 |
+
"content": "<extra_id_148>",
|
1245 |
+
"lstrip": false,
|
1246 |
+
"normalized": false,
|
1247 |
+
"rstrip": false,
|
1248 |
+
"single_word": false,
|
1249 |
+
"special": false
|
1250 |
+
},
|
1251 |
+
"256152": {
|
1252 |
+
"content": "<extra_id_147>",
|
1253 |
+
"lstrip": false,
|
1254 |
+
"normalized": false,
|
1255 |
+
"rstrip": false,
|
1256 |
+
"single_word": false,
|
1257 |
+
"special": false
|
1258 |
+
},
|
1259 |
+
"256153": {
|
1260 |
+
"content": "<extra_id_146>",
|
1261 |
+
"lstrip": false,
|
1262 |
+
"normalized": false,
|
1263 |
+
"rstrip": false,
|
1264 |
+
"single_word": false,
|
1265 |
+
"special": false
|
1266 |
+
},
|
1267 |
+
"256154": {
|
1268 |
+
"content": "<extra_id_145>",
|
1269 |
+
"lstrip": false,
|
1270 |
+
"normalized": false,
|
1271 |
+
"rstrip": false,
|
1272 |
+
"single_word": false,
|
1273 |
+
"special": false
|
1274 |
+
},
|
1275 |
+
"256155": {
|
1276 |
+
"content": "<extra_id_144>",
|
1277 |
+
"lstrip": false,
|
1278 |
+
"normalized": false,
|
1279 |
+
"rstrip": false,
|
1280 |
+
"single_word": false,
|
1281 |
+
"special": false
|
1282 |
+
},
|
1283 |
+
"256156": {
|
1284 |
+
"content": "<extra_id_143>",
|
1285 |
+
"lstrip": false,
|
1286 |
+
"normalized": false,
|
1287 |
+
"rstrip": false,
|
1288 |
+
"single_word": false,
|
1289 |
+
"special": false
|
1290 |
+
},
|
1291 |
+
"256157": {
|
1292 |
+
"content": "<extra_id_142>",
|
1293 |
+
"lstrip": false,
|
1294 |
+
"normalized": false,
|
1295 |
+
"rstrip": false,
|
1296 |
+
"single_word": false,
|
1297 |
+
"special": false
|
1298 |
+
},
|
1299 |
+
"256158": {
|
1300 |
+
"content": "<extra_id_141>",
|
1301 |
+
"lstrip": false,
|
1302 |
+
"normalized": false,
|
1303 |
+
"rstrip": false,
|
1304 |
+
"single_word": false,
|
1305 |
+
"special": false
|
1306 |
+
},
|
1307 |
+
"256159": {
|
1308 |
+
"content": "<extra_id_140>",
|
1309 |
+
"lstrip": false,
|
1310 |
+
"normalized": false,
|
1311 |
+
"rstrip": false,
|
1312 |
+
"single_word": false,
|
1313 |
+
"special": false
|
1314 |
+
},
|
1315 |
+
"256160": {
|
1316 |
+
"content": "<extra_id_139>",
|
1317 |
+
"lstrip": false,
|
1318 |
+
"normalized": false,
|
1319 |
+
"rstrip": false,
|
1320 |
+
"single_word": false,
|
1321 |
+
"special": false
|
1322 |
+
},
|
1323 |
+
"256161": {
|
1324 |
+
"content": "<extra_id_138>",
|
1325 |
+
"lstrip": false,
|
1326 |
+
"normalized": false,
|
1327 |
+
"rstrip": false,
|
1328 |
+
"single_word": false,
|
1329 |
+
"special": false
|
1330 |
+
},
|
1331 |
+
"256162": {
|
1332 |
+
"content": "<extra_id_137>",
|
1333 |
+
"lstrip": false,
|
1334 |
+
"normalized": false,
|
1335 |
+
"rstrip": false,
|
1336 |
+
"single_word": false,
|
1337 |
+
"special": false
|
1338 |
+
},
|
1339 |
+
"256163": {
|
1340 |
+
"content": "<extra_id_136>",
|
1341 |
+
"lstrip": false,
|
1342 |
+
"normalized": false,
|
1343 |
+
"rstrip": false,
|
1344 |
+
"single_word": false,
|
1345 |
+
"special": false
|
1346 |
+
},
|
1347 |
+
"256164": {
|
1348 |
+
"content": "<extra_id_135>",
|
1349 |
+
"lstrip": false,
|
1350 |
+
"normalized": false,
|
1351 |
+
"rstrip": false,
|
1352 |
+
"single_word": false,
|
1353 |
+
"special": false
|
1354 |
+
},
|
1355 |
+
"256165": {
|
1356 |
+
"content": "<extra_id_134>",
|
1357 |
+
"lstrip": false,
|
1358 |
+
"normalized": false,
|
1359 |
+
"rstrip": false,
|
1360 |
+
"single_word": false,
|
1361 |
+
"special": false
|
1362 |
+
},
|
1363 |
+
"256166": {
|
1364 |
+
"content": "<extra_id_133>",
|
1365 |
+
"lstrip": false,
|
1366 |
+
"normalized": false,
|
1367 |
+
"rstrip": false,
|
1368 |
+
"single_word": false,
|
1369 |
+
"special": false
|
1370 |
+
},
|
1371 |
+
"256167": {
|
1372 |
+
"content": "<extra_id_132>",
|
1373 |
+
"lstrip": false,
|
1374 |
+
"normalized": false,
|
1375 |
+
"rstrip": false,
|
1376 |
+
"single_word": false,
|
1377 |
+
"special": false
|
1378 |
+
},
|
1379 |
+
"256168": {
|
1380 |
+
"content": "<extra_id_131>",
|
1381 |
+
"lstrip": false,
|
1382 |
+
"normalized": false,
|
1383 |
+
"rstrip": false,
|
1384 |
+
"single_word": false,
|
1385 |
+
"special": false
|
1386 |
+
},
|
1387 |
+
"256169": {
|
1388 |
+
"content": "<extra_id_130>",
|
1389 |
+
"lstrip": false,
|
1390 |
+
"normalized": false,
|
1391 |
+
"rstrip": false,
|
1392 |
+
"single_word": false,
|
1393 |
+
"special": false
|
1394 |
+
},
|
1395 |
+
"256170": {
|
1396 |
+
"content": "<extra_id_129>",
|
1397 |
+
"lstrip": false,
|
1398 |
+
"normalized": false,
|
1399 |
+
"rstrip": false,
|
1400 |
+
"single_word": false,
|
1401 |
+
"special": false
|
1402 |
+
},
|
1403 |
+
"256171": {
|
1404 |
+
"content": "<extra_id_128>",
|
1405 |
+
"lstrip": false,
|
1406 |
+
"normalized": false,
|
1407 |
+
"rstrip": false,
|
1408 |
+
"single_word": false,
|
1409 |
+
"special": false
|
1410 |
+
},
|
1411 |
+
"256172": {
|
1412 |
+
"content": "<extra_id_127>",
|
1413 |
+
"lstrip": false,
|
1414 |
+
"normalized": false,
|
1415 |
+
"rstrip": false,
|
1416 |
+
"single_word": false,
|
1417 |
+
"special": false
|
1418 |
+
},
|
1419 |
+
"256173": {
|
1420 |
+
"content": "<extra_id_126>",
|
1421 |
+
"lstrip": false,
|
1422 |
+
"normalized": false,
|
1423 |
+
"rstrip": false,
|
1424 |
+
"single_word": false,
|
1425 |
+
"special": false
|
1426 |
+
},
|
1427 |
+
"256174": {
|
1428 |
+
"content": "<extra_id_125>",
|
1429 |
+
"lstrip": false,
|
1430 |
+
"normalized": false,
|
1431 |
+
"rstrip": false,
|
1432 |
+
"single_word": false,
|
1433 |
+
"special": false
|
1434 |
+
},
|
1435 |
+
"256175": {
|
1436 |
+
"content": "<extra_id_124>",
|
1437 |
+
"lstrip": false,
|
1438 |
+
"normalized": false,
|
1439 |
+
"rstrip": false,
|
1440 |
+
"single_word": false,
|
1441 |
+
"special": false
|
1442 |
+
},
|
1443 |
+
"256176": {
|
1444 |
+
"content": "<extra_id_123>",
|
1445 |
+
"lstrip": false,
|
1446 |
+
"normalized": false,
|
1447 |
+
"rstrip": false,
|
1448 |
+
"single_word": false,
|
1449 |
+
"special": false
|
1450 |
+
},
|
1451 |
+
"256177": {
|
1452 |
+
"content": "<extra_id_122>",
|
1453 |
+
"lstrip": false,
|
1454 |
+
"normalized": false,
|
1455 |
+
"rstrip": false,
|
1456 |
+
"single_word": false,
|
1457 |
+
"special": false
|
1458 |
+
},
|
1459 |
+
"256178": {
|
1460 |
+
"content": "<extra_id_121>",
|
1461 |
+
"lstrip": false,
|
1462 |
+
"normalized": false,
|
1463 |
+
"rstrip": false,
|
1464 |
+
"single_word": false,
|
1465 |
+
"special": false
|
1466 |
+
},
|
1467 |
+
"256179": {
|
1468 |
+
"content": "<extra_id_120>",
|
1469 |
+
"lstrip": false,
|
1470 |
+
"normalized": false,
|
1471 |
+
"rstrip": false,
|
1472 |
+
"single_word": false,
|
1473 |
+
"special": false
|
1474 |
+
},
|
1475 |
+
"256180": {
|
1476 |
+
"content": "<extra_id_119>",
|
1477 |
+
"lstrip": false,
|
1478 |
+
"normalized": false,
|
1479 |
+
"rstrip": false,
|
1480 |
+
"single_word": false,
|
1481 |
+
"special": false
|
1482 |
+
},
|
1483 |
+
"256181": {
|
1484 |
+
"content": "<extra_id_118>",
|
1485 |
+
"lstrip": false,
|
1486 |
+
"normalized": false,
|
1487 |
+
"rstrip": false,
|
1488 |
+
"single_word": false,
|
1489 |
+
"special": false
|
1490 |
+
},
|
1491 |
+
"256182": {
|
1492 |
+
"content": "<extra_id_117>",
|
1493 |
+
"lstrip": false,
|
1494 |
+
"normalized": false,
|
1495 |
+
"rstrip": false,
|
1496 |
+
"single_word": false,
|
1497 |
+
"special": false
|
1498 |
+
},
|
1499 |
+
"256183": {
|
1500 |
+
"content": "<extra_id_116>",
|
1501 |
+
"lstrip": false,
|
1502 |
+
"normalized": false,
|
1503 |
+
"rstrip": false,
|
1504 |
+
"single_word": false,
|
1505 |
+
"special": false
|
1506 |
+
},
|
1507 |
+
"256184": {
|
1508 |
+
"content": "<extra_id_115>",
|
1509 |
+
"lstrip": false,
|
1510 |
+
"normalized": false,
|
1511 |
+
"rstrip": false,
|
1512 |
+
"single_word": false,
|
1513 |
+
"special": false
|
1514 |
+
},
|
1515 |
+
"256185": {
|
1516 |
+
"content": "<extra_id_114>",
|
1517 |
+
"lstrip": false,
|
1518 |
+
"normalized": false,
|
1519 |
+
"rstrip": false,
|
1520 |
+
"single_word": false,
|
1521 |
+
"special": false
|
1522 |
+
},
|
1523 |
+
"256186": {
|
1524 |
+
"content": "<extra_id_113>",
|
1525 |
+
"lstrip": false,
|
1526 |
+
"normalized": false,
|
1527 |
+
"rstrip": false,
|
1528 |
+
"single_word": false,
|
1529 |
+
"special": false
|
1530 |
+
},
|
1531 |
+
"256187": {
|
1532 |
+
"content": "<extra_id_112>",
|
1533 |
+
"lstrip": false,
|
1534 |
+
"normalized": false,
|
1535 |
+
"rstrip": false,
|
1536 |
+
"single_word": false,
|
1537 |
+
"special": false
|
1538 |
+
},
|
1539 |
+
"256188": {
|
1540 |
+
"content": "<extra_id_111>",
|
1541 |
+
"lstrip": false,
|
1542 |
+
"normalized": false,
|
1543 |
+
"rstrip": false,
|
1544 |
+
"single_word": false,
|
1545 |
+
"special": false
|
1546 |
+
},
|
1547 |
+
"256189": {
|
1548 |
+
"content": "<extra_id_110>",
|
1549 |
+
"lstrip": false,
|
1550 |
+
"normalized": false,
|
1551 |
+
"rstrip": false,
|
1552 |
+
"single_word": false,
|
1553 |
+
"special": false
|
1554 |
+
},
|
1555 |
+
"256190": {
|
1556 |
+
"content": "<extra_id_109>",
|
1557 |
+
"lstrip": false,
|
1558 |
+
"normalized": false,
|
1559 |
+
"rstrip": false,
|
1560 |
+
"single_word": false,
|
1561 |
+
"special": false
|
1562 |
+
},
|
1563 |
+
"256191": {
|
1564 |
+
"content": "<extra_id_108>",
|
1565 |
+
"lstrip": false,
|
1566 |
+
"normalized": false,
|
1567 |
+
"rstrip": false,
|
1568 |
+
"single_word": false,
|
1569 |
+
"special": false
|
1570 |
+
},
|
1571 |
+
"256192": {
|
1572 |
+
"content": "<extra_id_107>",
|
1573 |
+
"lstrip": false,
|
1574 |
+
"normalized": false,
|
1575 |
+
"rstrip": false,
|
1576 |
+
"single_word": false,
|
1577 |
+
"special": false
|
1578 |
+
},
|
1579 |
+
"256193": {
|
1580 |
+
"content": "<extra_id_106>",
|
1581 |
+
"lstrip": false,
|
1582 |
+
"normalized": false,
|
1583 |
+
"rstrip": false,
|
1584 |
+
"single_word": false,
|
1585 |
+
"special": false
|
1586 |
+
},
|
1587 |
+
"256194": {
|
1588 |
+
"content": "<extra_id_105>",
|
1589 |
+
"lstrip": false,
|
1590 |
+
"normalized": false,
|
1591 |
+
"rstrip": false,
|
1592 |
+
"single_word": false,
|
1593 |
+
"special": false
|
1594 |
+
},
|
1595 |
+
"256195": {
|
1596 |
+
"content": "<extra_id_104>",
|
1597 |
+
"lstrip": false,
|
1598 |
+
"normalized": false,
|
1599 |
+
"rstrip": false,
|
1600 |
+
"single_word": false,
|
1601 |
+
"special": false
|
1602 |
+
},
|
1603 |
+
"256196": {
|
1604 |
+
"content": "<extra_id_103>",
|
1605 |
+
"lstrip": false,
|
1606 |
+
"normalized": false,
|
1607 |
+
"rstrip": false,
|
1608 |
+
"single_word": false,
|
1609 |
+
"special": false
|
1610 |
+
},
|
1611 |
+
"256197": {
|
1612 |
+
"content": "<extra_id_102>",
|
1613 |
+
"lstrip": false,
|
1614 |
+
"normalized": false,
|
1615 |
+
"rstrip": false,
|
1616 |
+
"single_word": false,
|
1617 |
+
"special": false
|
1618 |
+
},
|
1619 |
+
"256198": {
|
1620 |
+
"content": "<extra_id_101>",
|
1621 |
+
"lstrip": false,
|
1622 |
+
"normalized": false,
|
1623 |
+
"rstrip": false,
|
1624 |
+
"single_word": false,
|
1625 |
+
"special": false
|
1626 |
+
},
|
1627 |
+
"256199": {
|
1628 |
+
"content": "<extra_id_100>",
|
1629 |
+
"lstrip": false,
|
1630 |
+
"normalized": false,
|
1631 |
+
"rstrip": false,
|
1632 |
+
"single_word": false,
|
1633 |
+
"special": false
|
1634 |
+
},
|
1635 |
+
"256200": {
|
1636 |
+
"content": "<extra_id_99>",
|
1637 |
+
"lstrip": false,
|
1638 |
+
"normalized": false,
|
1639 |
+
"rstrip": false,
|
1640 |
+
"single_word": false,
|
1641 |
+
"special": false
|
1642 |
+
},
|
1643 |
+
"256201": {
|
1644 |
+
"content": "<extra_id_98>",
|
1645 |
+
"lstrip": false,
|
1646 |
+
"normalized": false,
|
1647 |
+
"rstrip": false,
|
1648 |
+
"single_word": false,
|
1649 |
+
"special": false
|
1650 |
+
},
|
1651 |
+
"256202": {
|
1652 |
+
"content": "<extra_id_97>",
|
1653 |
+
"lstrip": false,
|
1654 |
+
"normalized": false,
|
1655 |
+
"rstrip": false,
|
1656 |
+
"single_word": false,
|
1657 |
+
"special": false
|
1658 |
+
},
|
1659 |
+
"256203": {
|
1660 |
+
"content": "<extra_id_96>",
|
1661 |
+
"lstrip": false,
|
1662 |
+
"normalized": false,
|
1663 |
+
"rstrip": false,
|
1664 |
+
"single_word": false,
|
1665 |
+
"special": false
|
1666 |
+
},
|
1667 |
+
"256204": {
|
1668 |
+
"content": "<extra_id_95>",
|
1669 |
+
"lstrip": false,
|
1670 |
+
"normalized": false,
|
1671 |
+
"rstrip": false,
|
1672 |
+
"single_word": false,
|
1673 |
+
"special": false
|
1674 |
+
},
|
1675 |
+
"256205": {
|
1676 |
+
"content": "<extra_id_94>",
|
1677 |
+
"lstrip": false,
|
1678 |
+
"normalized": false,
|
1679 |
+
"rstrip": false,
|
1680 |
+
"single_word": false,
|
1681 |
+
"special": false
|
1682 |
+
},
|
1683 |
+
"256206": {
|
1684 |
+
"content": "<extra_id_93>",
|
1685 |
+
"lstrip": false,
|
1686 |
+
"normalized": false,
|
1687 |
+
"rstrip": false,
|
1688 |
+
"single_word": false,
|
1689 |
+
"special": false
|
1690 |
+
},
|
1691 |
+
"256207": {
|
1692 |
+
"content": "<extra_id_92>",
|
1693 |
+
"lstrip": false,
|
1694 |
+
"normalized": false,
|
1695 |
+
"rstrip": false,
|
1696 |
+
"single_word": false,
|
1697 |
+
"special": false
|
1698 |
+
},
|
1699 |
+
"256208": {
|
1700 |
+
"content": "<extra_id_91>",
|
1701 |
+
"lstrip": false,
|
1702 |
+
"normalized": false,
|
1703 |
+
"rstrip": false,
|
1704 |
+
"single_word": false,
|
1705 |
+
"special": false
|
1706 |
+
},
|
1707 |
+
"256209": {
|
1708 |
+
"content": "<extra_id_90>",
|
1709 |
+
"lstrip": false,
|
1710 |
+
"normalized": false,
|
1711 |
+
"rstrip": false,
|
1712 |
+
"single_word": false,
|
1713 |
+
"special": false
|
1714 |
+
},
|
1715 |
+
"256210": {
|
1716 |
+
"content": "<extra_id_89>",
|
1717 |
+
"lstrip": false,
|
1718 |
+
"normalized": false,
|
1719 |
+
"rstrip": false,
|
1720 |
+
"single_word": false,
|
1721 |
+
"special": false
|
1722 |
+
},
|
1723 |
+
"256211": {
|
1724 |
+
"content": "<extra_id_88>",
|
1725 |
+
"lstrip": false,
|
1726 |
+
"normalized": false,
|
1727 |
+
"rstrip": false,
|
1728 |
+
"single_word": false,
|
1729 |
+
"special": false
|
1730 |
+
},
|
1731 |
+
"256212": {
|
1732 |
+
"content": "<extra_id_87>",
|
1733 |
+
"lstrip": false,
|
1734 |
+
"normalized": false,
|
1735 |
+
"rstrip": false,
|
1736 |
+
"single_word": false,
|
1737 |
+
"special": false
|
1738 |
+
},
|
1739 |
+
"256213": {
|
1740 |
+
"content": "<extra_id_86>",
|
1741 |
+
"lstrip": false,
|
1742 |
+
"normalized": false,
|
1743 |
+
"rstrip": false,
|
1744 |
+
"single_word": false,
|
1745 |
+
"special": false
|
1746 |
+
},
|
1747 |
+
"256214": {
|
1748 |
+
"content": "<extra_id_85>",
|
1749 |
+
"lstrip": false,
|
1750 |
+
"normalized": false,
|
1751 |
+
"rstrip": false,
|
1752 |
+
"single_word": false,
|
1753 |
+
"special": false
|
1754 |
+
},
|
1755 |
+
"256215": {
|
1756 |
+
"content": "<extra_id_84>",
|
1757 |
+
"lstrip": false,
|
1758 |
+
"normalized": false,
|
1759 |
+
"rstrip": false,
|
1760 |
+
"single_word": false,
|
1761 |
+
"special": false
|
1762 |
+
},
|
1763 |
+
"256216": {
|
1764 |
+
"content": "<extra_id_83>",
|
1765 |
+
"lstrip": false,
|
1766 |
+
"normalized": false,
|
1767 |
+
"rstrip": false,
|
1768 |
+
"single_word": false,
|
1769 |
+
"special": false
|
1770 |
+
},
|
1771 |
+
"256217": {
|
1772 |
+
"content": "<extra_id_82>",
|
1773 |
+
"lstrip": false,
|
1774 |
+
"normalized": false,
|
1775 |
+
"rstrip": false,
|
1776 |
+
"single_word": false,
|
1777 |
+
"special": false
|
1778 |
+
},
|
1779 |
+
"256218": {
|
1780 |
+
"content": "<extra_id_81>",
|
1781 |
+
"lstrip": false,
|
1782 |
+
"normalized": false,
|
1783 |
+
"rstrip": false,
|
1784 |
+
"single_word": false,
|
1785 |
+
"special": false
|
1786 |
+
},
|
1787 |
+
"256219": {
|
1788 |
+
"content": "<extra_id_80>",
|
1789 |
+
"lstrip": false,
|
1790 |
+
"normalized": false,
|
1791 |
+
"rstrip": false,
|
1792 |
+
"single_word": false,
|
1793 |
+
"special": false
|
1794 |
+
},
|
1795 |
+
"256220": {
|
1796 |
+
"content": "<extra_id_79>",
|
1797 |
+
"lstrip": false,
|
1798 |
+
"normalized": false,
|
1799 |
+
"rstrip": false,
|
1800 |
+
"single_word": false,
|
1801 |
+
"special": false
|
1802 |
+
},
|
1803 |
+
"256221": {
|
1804 |
+
"content": "<extra_id_78>",
|
1805 |
+
"lstrip": false,
|
1806 |
+
"normalized": false,
|
1807 |
+
"rstrip": false,
|
1808 |
+
"single_word": false,
|
1809 |
+
"special": false
|
1810 |
+
},
|
1811 |
+
"256222": {
|
1812 |
+
"content": "<extra_id_77>",
|
1813 |
+
"lstrip": false,
|
1814 |
+
"normalized": false,
|
1815 |
+
"rstrip": false,
|
1816 |
+
"single_word": false,
|
1817 |
+
"special": false
|
1818 |
+
},
|
1819 |
+
"256223": {
|
1820 |
+
"content": "<extra_id_76>",
|
1821 |
+
"lstrip": false,
|
1822 |
+
"normalized": false,
|
1823 |
+
"rstrip": false,
|
1824 |
+
"single_word": false,
|
1825 |
+
"special": false
|
1826 |
+
},
|
1827 |
+
"256224": {
|
1828 |
+
"content": "<extra_id_75>",
|
1829 |
+
"lstrip": false,
|
1830 |
+
"normalized": false,
|
1831 |
+
"rstrip": false,
|
1832 |
+
"single_word": false,
|
1833 |
+
"special": false
|
1834 |
+
},
|
1835 |
+
"256225": {
|
1836 |
+
"content": "<extra_id_74>",
|
1837 |
+
"lstrip": false,
|
1838 |
+
"normalized": false,
|
1839 |
+
"rstrip": false,
|
1840 |
+
"single_word": false,
|
1841 |
+
"special": false
|
1842 |
+
},
|
1843 |
+
"256226": {
|
1844 |
+
"content": "<extra_id_73>",
|
1845 |
+
"lstrip": false,
|
1846 |
+
"normalized": false,
|
1847 |
+
"rstrip": false,
|
1848 |
+
"single_word": false,
|
1849 |
+
"special": false
|
1850 |
+
},
|
1851 |
+
"256227": {
|
1852 |
+
"content": "<extra_id_72>",
|
1853 |
+
"lstrip": false,
|
1854 |
+
"normalized": false,
|
1855 |
+
"rstrip": false,
|
1856 |
+
"single_word": false,
|
1857 |
+
"special": false
|
1858 |
+
},
|
1859 |
+
"256228": {
|
1860 |
+
"content": "<extra_id_71>",
|
1861 |
+
"lstrip": false,
|
1862 |
+
"normalized": false,
|
1863 |
+
"rstrip": false,
|
1864 |
+
"single_word": false,
|
1865 |
+
"special": false
|
1866 |
+
},
|
1867 |
+
"256229": {
|
1868 |
+
"content": "<extra_id_70>",
|
1869 |
+
"lstrip": false,
|
1870 |
+
"normalized": false,
|
1871 |
+
"rstrip": false,
|
1872 |
+
"single_word": false,
|
1873 |
+
"special": false
|
1874 |
+
},
|
1875 |
+
"256230": {
|
1876 |
+
"content": "<extra_id_69>",
|
1877 |
+
"lstrip": false,
|
1878 |
+
"normalized": false,
|
1879 |
+
"rstrip": false,
|
1880 |
+
"single_word": false,
|
1881 |
+
"special": false
|
1882 |
+
},
|
1883 |
+
"256231": {
|
1884 |
+
"content": "<extra_id_68>",
|
1885 |
+
"lstrip": false,
|
1886 |
+
"normalized": false,
|
1887 |
+
"rstrip": false,
|
1888 |
+
"single_word": false,
|
1889 |
+
"special": false
|
1890 |
+
},
|
1891 |
+
"256232": {
|
1892 |
+
"content": "<extra_id_67>",
|
1893 |
+
"lstrip": false,
|
1894 |
+
"normalized": false,
|
1895 |
+
"rstrip": false,
|
1896 |
+
"single_word": false,
|
1897 |
+
"special": false
|
1898 |
+
},
|
1899 |
+
"256233": {
|
1900 |
+
"content": "<extra_id_66>",
|
1901 |
+
"lstrip": false,
|
1902 |
+
"normalized": false,
|
1903 |
+
"rstrip": false,
|
1904 |
+
"single_word": false,
|
1905 |
+
"special": false
|
1906 |
+
},
|
1907 |
+
"256234": {
|
1908 |
+
"content": "<extra_id_65>",
|
1909 |
+
"lstrip": false,
|
1910 |
+
"normalized": false,
|
1911 |
+
"rstrip": false,
|
1912 |
+
"single_word": false,
|
1913 |
+
"special": false
|
1914 |
+
},
|
1915 |
+
"256235": {
|
1916 |
+
"content": "<extra_id_64>",
|
1917 |
+
"lstrip": false,
|
1918 |
+
"normalized": false,
|
1919 |
+
"rstrip": false,
|
1920 |
+
"single_word": false,
|
1921 |
+
"special": false
|
1922 |
+
},
|
1923 |
+
"256236": {
|
1924 |
+
"content": "<extra_id_63>",
|
1925 |
+
"lstrip": false,
|
1926 |
+
"normalized": false,
|
1927 |
+
"rstrip": false,
|
1928 |
+
"single_word": false,
|
1929 |
+
"special": false
|
1930 |
+
},
|
1931 |
+
"256237": {
|
1932 |
+
"content": "<extra_id_62>",
|
1933 |
+
"lstrip": false,
|
1934 |
+
"normalized": false,
|
1935 |
+
"rstrip": false,
|
1936 |
+
"single_word": false,
|
1937 |
+
"special": false
|
1938 |
+
},
|
1939 |
+
"256238": {
|
1940 |
+
"content": "<extra_id_61>",
|
1941 |
+
"lstrip": false,
|
1942 |
+
"normalized": false,
|
1943 |
+
"rstrip": false,
|
1944 |
+
"single_word": false,
|
1945 |
+
"special": false
|
1946 |
+
},
|
1947 |
+
"256239": {
|
1948 |
+
"content": "<extra_id_60>",
|
1949 |
+
"lstrip": false,
|
1950 |
+
"normalized": false,
|
1951 |
+
"rstrip": false,
|
1952 |
+
"single_word": false,
|
1953 |
+
"special": false
|
1954 |
+
},
|
1955 |
+
"256240": {
|
1956 |
+
"content": "<extra_id_59>",
|
1957 |
+
"lstrip": false,
|
1958 |
+
"normalized": false,
|
1959 |
+
"rstrip": false,
|
1960 |
+
"single_word": false,
|
1961 |
+
"special": false
|
1962 |
+
},
|
1963 |
+
"256241": {
|
1964 |
+
"content": "<extra_id_58>",
|
1965 |
+
"lstrip": false,
|
1966 |
+
"normalized": false,
|
1967 |
+
"rstrip": false,
|
1968 |
+
"single_word": false,
|
1969 |
+
"special": false
|
1970 |
+
},
|
1971 |
+
"256242": {
|
1972 |
+
"content": "<extra_id_57>",
|
1973 |
+
"lstrip": false,
|
1974 |
+
"normalized": false,
|
1975 |
+
"rstrip": false,
|
1976 |
+
"single_word": false,
|
1977 |
+
"special": false
|
1978 |
+
},
|
1979 |
+
"256243": {
|
1980 |
+
"content": "<extra_id_56>",
|
1981 |
+
"lstrip": false,
|
1982 |
+
"normalized": false,
|
1983 |
+
"rstrip": false,
|
1984 |
+
"single_word": false,
|
1985 |
+
"special": false
|
1986 |
+
},
|
1987 |
+
"256244": {
|
1988 |
+
"content": "<extra_id_55>",
|
1989 |
+
"lstrip": false,
|
1990 |
+
"normalized": false,
|
1991 |
+
"rstrip": false,
|
1992 |
+
"single_word": false,
|
1993 |
+
"special": false
|
1994 |
+
},
|
1995 |
+
"256245": {
|
1996 |
+
"content": "<extra_id_54>",
|
1997 |
+
"lstrip": false,
|
1998 |
+
"normalized": false,
|
1999 |
+
"rstrip": false,
|
2000 |
+
"single_word": false,
|
2001 |
+
"special": false
|
2002 |
+
},
|
2003 |
+
"256246": {
|
2004 |
+
"content": "<extra_id_53>",
|
2005 |
+
"lstrip": false,
|
2006 |
+
"normalized": false,
|
2007 |
+
"rstrip": false,
|
2008 |
+
"single_word": false,
|
2009 |
+
"special": false
|
2010 |
+
},
|
2011 |
+
"256247": {
|
2012 |
+
"content": "<extra_id_52>",
|
2013 |
+
"lstrip": false,
|
2014 |
+
"normalized": false,
|
2015 |
+
"rstrip": false,
|
2016 |
+
"single_word": false,
|
2017 |
+
"special": false
|
2018 |
+
},
|
2019 |
+
"256248": {
|
2020 |
+
"content": "<extra_id_51>",
|
2021 |
+
"lstrip": false,
|
2022 |
+
"normalized": false,
|
2023 |
+
"rstrip": false,
|
2024 |
+
"single_word": false,
|
2025 |
+
"special": false
|
2026 |
+
},
|
2027 |
+
"256249": {
|
2028 |
+
"content": "<extra_id_50>",
|
2029 |
+
"lstrip": false,
|
2030 |
+
"normalized": false,
|
2031 |
+
"rstrip": false,
|
2032 |
+
"single_word": false,
|
2033 |
+
"special": false
|
2034 |
+
},
|
2035 |
+
"256250": {
|
2036 |
+
"content": "<extra_id_49>",
|
2037 |
+
"lstrip": false,
|
2038 |
+
"normalized": false,
|
2039 |
+
"rstrip": false,
|
2040 |
+
"single_word": false,
|
2041 |
+
"special": false
|
2042 |
+
},
|
2043 |
+
"256251": {
|
2044 |
+
"content": "<extra_id_48>",
|
2045 |
+
"lstrip": false,
|
2046 |
+
"normalized": false,
|
2047 |
+
"rstrip": false,
|
2048 |
+
"single_word": false,
|
2049 |
+
"special": false
|
2050 |
+
},
|
2051 |
+
"256252": {
|
2052 |
+
"content": "<extra_id_47>",
|
2053 |
+
"lstrip": false,
|
2054 |
+
"normalized": false,
|
2055 |
+
"rstrip": false,
|
2056 |
+
"single_word": false,
|
2057 |
+
"special": false
|
2058 |
+
},
|
2059 |
+
"256253": {
|
2060 |
+
"content": "<extra_id_46>",
|
2061 |
+
"lstrip": false,
|
2062 |
+
"normalized": false,
|
2063 |
+
"rstrip": false,
|
2064 |
+
"single_word": false,
|
2065 |
+
"special": false
|
2066 |
+
},
|
2067 |
+
"256254": {
|
2068 |
+
"content": "<extra_id_45>",
|
2069 |
+
"lstrip": false,
|
2070 |
+
"normalized": false,
|
2071 |
+
"rstrip": false,
|
2072 |
+
"single_word": false,
|
2073 |
+
"special": false
|
2074 |
+
},
|
2075 |
+
"256255": {
|
2076 |
+
"content": "<extra_id_44>",
|
2077 |
+
"lstrip": false,
|
2078 |
+
"normalized": false,
|
2079 |
+
"rstrip": false,
|
2080 |
+
"single_word": false,
|
2081 |
+
"special": false
|
2082 |
+
},
|
2083 |
+
"256256": {
|
2084 |
+
"content": "<extra_id_43>",
|
2085 |
+
"lstrip": false,
|
2086 |
+
"normalized": false,
|
2087 |
+
"rstrip": false,
|
2088 |
+
"single_word": false,
|
2089 |
+
"special": false
|
2090 |
+
},
|
2091 |
+
"256257": {
|
2092 |
+
"content": "<extra_id_42>",
|
2093 |
+
"lstrip": false,
|
2094 |
+
"normalized": false,
|
2095 |
+
"rstrip": false,
|
2096 |
+
"single_word": false,
|
2097 |
+
"special": false
|
2098 |
+
},
|
2099 |
+
"256258": {
|
2100 |
+
"content": "<extra_id_41>",
|
2101 |
+
"lstrip": false,
|
2102 |
+
"normalized": false,
|
2103 |
+
"rstrip": false,
|
2104 |
+
"single_word": false,
|
2105 |
+
"special": false
|
2106 |
+
},
|
2107 |
+
"256259": {
|
2108 |
+
"content": "<extra_id_40>",
|
2109 |
+
"lstrip": false,
|
2110 |
+
"normalized": false,
|
2111 |
+
"rstrip": false,
|
2112 |
+
"single_word": false,
|
2113 |
+
"special": false
|
2114 |
+
},
|
2115 |
+
"256260": {
|
2116 |
+
"content": "<extra_id_39>",
|
2117 |
+
"lstrip": false,
|
2118 |
+
"normalized": false,
|
2119 |
+
"rstrip": false,
|
2120 |
+
"single_word": false,
|
2121 |
+
"special": false
|
2122 |
+
},
|
2123 |
+
"256261": {
|
2124 |
+
"content": "<extra_id_38>",
|
2125 |
+
"lstrip": false,
|
2126 |
+
"normalized": false,
|
2127 |
+
"rstrip": false,
|
2128 |
+
"single_word": false,
|
2129 |
+
"special": false
|
2130 |
+
},
|
2131 |
+
"256262": {
|
2132 |
+
"content": "<extra_id_37>",
|
2133 |
+
"lstrip": false,
|
2134 |
+
"normalized": false,
|
2135 |
+
"rstrip": false,
|
2136 |
+
"single_word": false,
|
2137 |
+
"special": false
|
2138 |
+
},
|
2139 |
+
"256263": {
|
2140 |
+
"content": "<extra_id_36>",
|
2141 |
+
"lstrip": false,
|
2142 |
+
"normalized": false,
|
2143 |
+
"rstrip": false,
|
2144 |
+
"single_word": false,
|
2145 |
+
"special": false
|
2146 |
+
},
|
2147 |
+
"256264": {
|
2148 |
+
"content": "<extra_id_35>",
|
2149 |
+
"lstrip": false,
|
2150 |
+
"normalized": false,
|
2151 |
+
"rstrip": false,
|
2152 |
+
"single_word": false,
|
2153 |
+
"special": false
|
2154 |
+
},
|
2155 |
+
"256265": {
|
2156 |
+
"content": "<extra_id_34>",
|
2157 |
+
"lstrip": false,
|
2158 |
+
"normalized": false,
|
2159 |
+
"rstrip": false,
|
2160 |
+
"single_word": false,
|
2161 |
+
"special": false
|
2162 |
+
},
|
2163 |
+
"256266": {
|
2164 |
+
"content": "<extra_id_33>",
|
2165 |
+
"lstrip": false,
|
2166 |
+
"normalized": false,
|
2167 |
+
"rstrip": false,
|
2168 |
+
"single_word": false,
|
2169 |
+
"special": false
|
2170 |
+
},
|
2171 |
+
"256267": {
|
2172 |
+
"content": "<extra_id_32>",
|
2173 |
+
"lstrip": false,
|
2174 |
+
"normalized": false,
|
2175 |
+
"rstrip": false,
|
2176 |
+
"single_word": false,
|
2177 |
+
"special": false
|
2178 |
+
},
|
2179 |
+
"256268": {
|
2180 |
+
"content": "<extra_id_31>",
|
2181 |
+
"lstrip": false,
|
2182 |
+
"normalized": false,
|
2183 |
+
"rstrip": false,
|
2184 |
+
"single_word": false,
|
2185 |
+
"special": false
|
2186 |
+
},
|
2187 |
+
"256269": {
|
2188 |
+
"content": "<extra_id_30>",
|
2189 |
+
"lstrip": false,
|
2190 |
+
"normalized": false,
|
2191 |
+
"rstrip": false,
|
2192 |
+
"single_word": false,
|
2193 |
+
"special": false
|
2194 |
+
},
|
2195 |
+
"256270": {
|
2196 |
+
"content": "<extra_id_29>",
|
2197 |
+
"lstrip": false,
|
2198 |
+
"normalized": false,
|
2199 |
+
"rstrip": false,
|
2200 |
+
"single_word": false,
|
2201 |
+
"special": false
|
2202 |
+
},
|
2203 |
+
"256271": {
|
2204 |
+
"content": "<extra_id_28>",
|
2205 |
+
"lstrip": false,
|
2206 |
+
"normalized": false,
|
2207 |
+
"rstrip": false,
|
2208 |
+
"single_word": false,
|
2209 |
+
"special": false
|
2210 |
+
},
|
2211 |
+
"256272": {
|
2212 |
+
"content": "<extra_id_27>",
|
2213 |
+
"lstrip": false,
|
2214 |
+
"normalized": false,
|
2215 |
+
"rstrip": false,
|
2216 |
+
"single_word": false,
|
2217 |
+
"special": false
|
2218 |
+
},
|
2219 |
+
"256273": {
|
2220 |
+
"content": "<extra_id_26>",
|
2221 |
+
"lstrip": false,
|
2222 |
+
"normalized": false,
|
2223 |
+
"rstrip": false,
|
2224 |
+
"single_word": false,
|
2225 |
+
"special": false
|
2226 |
+
},
|
2227 |
+
"256274": {
|
2228 |
+
"content": "<extra_id_25>",
|
2229 |
+
"lstrip": false,
|
2230 |
+
"normalized": false,
|
2231 |
+
"rstrip": false,
|
2232 |
+
"single_word": false,
|
2233 |
+
"special": false
|
2234 |
+
},
|
2235 |
+
"256275": {
|
2236 |
+
"content": "<extra_id_24>",
|
2237 |
+
"lstrip": false,
|
2238 |
+
"normalized": false,
|
2239 |
+
"rstrip": false,
|
2240 |
+
"single_word": false,
|
2241 |
+
"special": false
|
2242 |
+
},
|
2243 |
+
"256276": {
|
2244 |
+
"content": "<extra_id_23>",
|
2245 |
+
"lstrip": false,
|
2246 |
+
"normalized": false,
|
2247 |
+
"rstrip": false,
|
2248 |
+
"single_word": false,
|
2249 |
+
"special": false
|
2250 |
+
},
|
2251 |
+
"256277": {
|
2252 |
+
"content": "<extra_id_22>",
|
2253 |
+
"lstrip": false,
|
2254 |
+
"normalized": false,
|
2255 |
+
"rstrip": false,
|
2256 |
+
"single_word": false,
|
2257 |
+
"special": false
|
2258 |
+
},
|
2259 |
+
"256278": {
|
2260 |
+
"content": "<extra_id_21>",
|
2261 |
+
"lstrip": false,
|
2262 |
+
"normalized": false,
|
2263 |
+
"rstrip": false,
|
2264 |
+
"single_word": false,
|
2265 |
+
"special": false
|
2266 |
+
},
|
2267 |
+
"256279": {
|
2268 |
+
"content": "<extra_id_20>",
|
2269 |
+
"lstrip": false,
|
2270 |
+
"normalized": false,
|
2271 |
+
"rstrip": false,
|
2272 |
+
"single_word": false,
|
2273 |
+
"special": false
|
2274 |
+
},
|
2275 |
+
"256280": {
|
2276 |
+
"content": "<extra_id_19>",
|
2277 |
+
"lstrip": false,
|
2278 |
+
"normalized": false,
|
2279 |
+
"rstrip": false,
|
2280 |
+
"single_word": false,
|
2281 |
+
"special": false
|
2282 |
+
},
|
2283 |
+
"256281": {
|
2284 |
+
"content": "<extra_id_18>",
|
2285 |
+
"lstrip": false,
|
2286 |
+
"normalized": false,
|
2287 |
+
"rstrip": false,
|
2288 |
+
"single_word": false,
|
2289 |
+
"special": false
|
2290 |
+
},
|
2291 |
+
"256282": {
|
2292 |
+
"content": "<extra_id_17>",
|
2293 |
+
"lstrip": false,
|
2294 |
+
"normalized": false,
|
2295 |
+
"rstrip": false,
|
2296 |
+
"single_word": false,
|
2297 |
+
"special": false
|
2298 |
+
},
|
2299 |
+
"256283": {
|
2300 |
+
"content": "<extra_id_16>",
|
2301 |
+
"lstrip": false,
|
2302 |
+
"normalized": false,
|
2303 |
+
"rstrip": false,
|
2304 |
+
"single_word": false,
|
2305 |
+
"special": false
|
2306 |
+
},
|
2307 |
+
"256284": {
|
2308 |
+
"content": "<extra_id_15>",
|
2309 |
+
"lstrip": false,
|
2310 |
+
"normalized": false,
|
2311 |
+
"rstrip": false,
|
2312 |
+
"single_word": false,
|
2313 |
+
"special": false
|
2314 |
+
},
|
2315 |
+
"256285": {
|
2316 |
+
"content": "<extra_id_14>",
|
2317 |
+
"lstrip": false,
|
2318 |
+
"normalized": false,
|
2319 |
+
"rstrip": false,
|
2320 |
+
"single_word": false,
|
2321 |
+
"special": false
|
2322 |
+
},
|
2323 |
+
"256286": {
|
2324 |
+
"content": "<extra_id_13>",
|
2325 |
+
"lstrip": false,
|
2326 |
+
"normalized": false,
|
2327 |
+
"rstrip": false,
|
2328 |
+
"single_word": false,
|
2329 |
+
"special": false
|
2330 |
+
},
|
2331 |
+
"256287": {
|
2332 |
+
"content": "<extra_id_12>",
|
2333 |
+
"lstrip": false,
|
2334 |
+
"normalized": false,
|
2335 |
+
"rstrip": false,
|
2336 |
+
"single_word": false,
|
2337 |
+
"special": false
|
2338 |
+
},
|
2339 |
+
"256288": {
|
2340 |
+
"content": "<extra_id_11>",
|
2341 |
+
"lstrip": false,
|
2342 |
+
"normalized": false,
|
2343 |
+
"rstrip": false,
|
2344 |
+
"single_word": false,
|
2345 |
+
"special": false
|
2346 |
+
},
|
2347 |
+
"256289": {
|
2348 |
+
"content": "<extra_id_10>",
|
2349 |
+
"lstrip": false,
|
2350 |
+
"normalized": false,
|
2351 |
+
"rstrip": false,
|
2352 |
+
"single_word": false,
|
2353 |
+
"special": false
|
2354 |
+
},
|
2355 |
+
"256290": {
|
2356 |
+
"content": "<extra_id_9>",
|
2357 |
+
"lstrip": false,
|
2358 |
+
"normalized": false,
|
2359 |
+
"rstrip": false,
|
2360 |
+
"single_word": false,
|
2361 |
+
"special": false
|
2362 |
+
},
|
2363 |
+
"256291": {
|
2364 |
+
"content": "<extra_id_8>",
|
2365 |
+
"lstrip": false,
|
2366 |
+
"normalized": false,
|
2367 |
+
"rstrip": false,
|
2368 |
+
"single_word": false,
|
2369 |
+
"special": false
|
2370 |
+
},
|
2371 |
+
"256292": {
|
2372 |
+
"content": "<extra_id_7>",
|
2373 |
+
"lstrip": false,
|
2374 |
+
"normalized": false,
|
2375 |
+
"rstrip": false,
|
2376 |
+
"single_word": false,
|
2377 |
+
"special": false
|
2378 |
+
},
|
2379 |
+
"256293": {
|
2380 |
+
"content": "<extra_id_6>",
|
2381 |
+
"lstrip": false,
|
2382 |
+
"normalized": false,
|
2383 |
+
"rstrip": false,
|
2384 |
+
"single_word": false,
|
2385 |
+
"special": false
|
2386 |
+
},
|
2387 |
+
"256294": {
|
2388 |
+
"content": "<extra_id_5>",
|
2389 |
+
"lstrip": false,
|
2390 |
+
"normalized": false,
|
2391 |
+
"rstrip": false,
|
2392 |
+
"single_word": false,
|
2393 |
+
"special": false
|
2394 |
+
},
|
2395 |
+
"256295": {
|
2396 |
+
"content": "<extra_id_4>",
|
2397 |
+
"lstrip": false,
|
2398 |
+
"normalized": false,
|
2399 |
+
"rstrip": false,
|
2400 |
+
"single_word": false,
|
2401 |
+
"special": false
|
2402 |
+
},
|
2403 |
+
"256296": {
|
2404 |
+
"content": "<extra_id_3>",
|
2405 |
+
"lstrip": false,
|
2406 |
+
"normalized": false,
|
2407 |
+
"rstrip": false,
|
2408 |
+
"single_word": false,
|
2409 |
+
"special": false
|
2410 |
+
},
|
2411 |
+
"256297": {
|
2412 |
+
"content": "<extra_id_2>",
|
2413 |
+
"lstrip": false,
|
2414 |
+
"normalized": false,
|
2415 |
+
"rstrip": false,
|
2416 |
+
"single_word": false,
|
2417 |
+
"special": false
|
2418 |
+
},
|
2419 |
+
"256298": {
|
2420 |
+
"content": "<extra_id_1>",
|
2421 |
+
"lstrip": false,
|
2422 |
+
"normalized": false,
|
2423 |
+
"rstrip": false,
|
2424 |
+
"single_word": false,
|
2425 |
+
"special": false
|
2426 |
+
},
|
2427 |
+
"256299": {
|
2428 |
+
"content": "<extra_id_0>",
|
2429 |
+
"lstrip": false,
|
2430 |
+
"normalized": false,
|
2431 |
+
"rstrip": false,
|
2432 |
+
"single_word": false,
|
2433 |
+
"special": false
|
2434 |
+
}
|
2435 |
+
},
|
2436 |
+
"additional_special_tokens": [
|
2437 |
+
"<extra_id_0>",
|
2438 |
+
"<extra_id_1>",
|
2439 |
+
"<extra_id_2>",
|
2440 |
+
"<extra_id_3>",
|
2441 |
+
"<extra_id_4>",
|
2442 |
+
"<extra_id_5>",
|
2443 |
+
"<extra_id_6>",
|
2444 |
+
"<extra_id_7>",
|
2445 |
+
"<extra_id_8>",
|
2446 |
+
"<extra_id_9>",
|
2447 |
+
"<extra_id_10>",
|
2448 |
+
"<extra_id_11>",
|
2449 |
+
"<extra_id_12>",
|
2450 |
+
"<extra_id_13>",
|
2451 |
+
"<extra_id_14>",
|
2452 |
+
"<extra_id_15>",
|
2453 |
+
"<extra_id_16>",
|
2454 |
+
"<extra_id_17>",
|
2455 |
+
"<extra_id_18>",
|
2456 |
+
"<extra_id_19>",
|
2457 |
+
"<extra_id_20>",
|
2458 |
+
"<extra_id_21>",
|
2459 |
+
"<extra_id_22>",
|
2460 |
+
"<extra_id_23>",
|
2461 |
+
"<extra_id_24>",
|
2462 |
+
"<extra_id_25>",
|
2463 |
+
"<extra_id_26>",
|
2464 |
+
"<extra_id_27>",
|
2465 |
+
"<extra_id_28>",
|
2466 |
+
"<extra_id_29>",
|
2467 |
+
"<extra_id_30>",
|
2468 |
+
"<extra_id_31>",
|
2469 |
+
"<extra_id_32>",
|
2470 |
+
"<extra_id_33>",
|
2471 |
+
"<extra_id_34>",
|
2472 |
+
"<extra_id_35>",
|
2473 |
+
"<extra_id_36>",
|
2474 |
+
"<extra_id_37>",
|
2475 |
+
"<extra_id_38>",
|
2476 |
+
"<extra_id_39>",
|
2477 |
+
"<extra_id_40>",
|
2478 |
+
"<extra_id_41>",
|
2479 |
+
"<extra_id_42>",
|
2480 |
+
"<extra_id_43>",
|
2481 |
+
"<extra_id_44>",
|
2482 |
+
"<extra_id_45>",
|
2483 |
+
"<extra_id_46>",
|
2484 |
+
"<extra_id_47>",
|
2485 |
+
"<extra_id_48>",
|
2486 |
+
"<extra_id_49>",
|
2487 |
+
"<extra_id_50>",
|
2488 |
+
"<extra_id_51>",
|
2489 |
+
"<extra_id_52>",
|
2490 |
+
"<extra_id_53>",
|
2491 |
+
"<extra_id_54>",
|
2492 |
+
"<extra_id_55>",
|
2493 |
+
"<extra_id_56>",
|
2494 |
+
"<extra_id_57>",
|
2495 |
+
"<extra_id_58>",
|
2496 |
+
"<extra_id_59>",
|
2497 |
+
"<extra_id_60>",
|
2498 |
+
"<extra_id_61>",
|
2499 |
+
"<extra_id_62>",
|
2500 |
+
"<extra_id_63>",
|
2501 |
+
"<extra_id_64>",
|
2502 |
+
"<extra_id_65>",
|
2503 |
+
"<extra_id_66>",
|
2504 |
+
"<extra_id_67>",
|
2505 |
+
"<extra_id_68>",
|
2506 |
+
"<extra_id_69>",
|
2507 |
+
"<extra_id_70>",
|
2508 |
+
"<extra_id_71>",
|
2509 |
+
"<extra_id_72>",
|
2510 |
+
"<extra_id_73>",
|
2511 |
+
"<extra_id_74>",
|
2512 |
+
"<extra_id_75>",
|
2513 |
+
"<extra_id_76>",
|
2514 |
+
"<extra_id_77>",
|
2515 |
+
"<extra_id_78>",
|
2516 |
+
"<extra_id_79>",
|
2517 |
+
"<extra_id_80>",
|
2518 |
+
"<extra_id_81>",
|
2519 |
+
"<extra_id_82>",
|
2520 |
+
"<extra_id_83>",
|
2521 |
+
"<extra_id_84>",
|
2522 |
+
"<extra_id_85>",
|
2523 |
+
"<extra_id_86>",
|
2524 |
+
"<extra_id_87>",
|
2525 |
+
"<extra_id_88>",
|
2526 |
+
"<extra_id_89>",
|
2527 |
+
"<extra_id_90>",
|
2528 |
+
"<extra_id_91>",
|
2529 |
+
"<extra_id_92>",
|
2530 |
+
"<extra_id_93>",
|
2531 |
+
"<extra_id_94>",
|
2532 |
+
"<extra_id_95>",
|
2533 |
+
"<extra_id_96>",
|
2534 |
+
"<extra_id_97>",
|
2535 |
+
"<extra_id_98>",
|
2536 |
+
"<extra_id_99>",
|
2537 |
+
"<extra_id_100>",
|
2538 |
+
"<extra_id_101>",
|
2539 |
+
"<extra_id_102>",
|
2540 |
+
"<extra_id_103>",
|
2541 |
+
"<extra_id_104>",
|
2542 |
+
"<extra_id_105>",
|
2543 |
+
"<extra_id_106>",
|
2544 |
+
"<extra_id_107>",
|
2545 |
+
"<extra_id_108>",
|
2546 |
+
"<extra_id_109>",
|
2547 |
+
"<extra_id_110>",
|
2548 |
+
"<extra_id_111>",
|
2549 |
+
"<extra_id_112>",
|
2550 |
+
"<extra_id_113>",
|
2551 |
+
"<extra_id_114>",
|
2552 |
+
"<extra_id_115>",
|
2553 |
+
"<extra_id_116>",
|
2554 |
+
"<extra_id_117>",
|
2555 |
+
"<extra_id_118>",
|
2556 |
+
"<extra_id_119>",
|
2557 |
+
"<extra_id_120>",
|
2558 |
+
"<extra_id_121>",
|
2559 |
+
"<extra_id_122>",
|
2560 |
+
"<extra_id_123>",
|
2561 |
+
"<extra_id_124>",
|
2562 |
+
"<extra_id_125>",
|
2563 |
+
"<extra_id_126>",
|
2564 |
+
"<extra_id_127>",
|
2565 |
+
"<extra_id_128>",
|
2566 |
+
"<extra_id_129>",
|
2567 |
+
"<extra_id_130>",
|
2568 |
+
"<extra_id_131>",
|
2569 |
+
"<extra_id_132>",
|
2570 |
+
"<extra_id_133>",
|
2571 |
+
"<extra_id_134>",
|
2572 |
+
"<extra_id_135>",
|
2573 |
+
"<extra_id_136>",
|
2574 |
+
"<extra_id_137>",
|
2575 |
+
"<extra_id_138>",
|
2576 |
+
"<extra_id_139>",
|
2577 |
+
"<extra_id_140>",
|
2578 |
+
"<extra_id_141>",
|
2579 |
+
"<extra_id_142>",
|
2580 |
+
"<extra_id_143>",
|
2581 |
+
"<extra_id_144>",
|
2582 |
+
"<extra_id_145>",
|
2583 |
+
"<extra_id_146>",
|
2584 |
+
"<extra_id_147>",
|
2585 |
+
"<extra_id_148>",
|
2586 |
+
"<extra_id_149>",
|
2587 |
+
"<extra_id_150>",
|
2588 |
+
"<extra_id_151>",
|
2589 |
+
"<extra_id_152>",
|
2590 |
+
"<extra_id_153>",
|
2591 |
+
"<extra_id_154>",
|
2592 |
+
"<extra_id_155>",
|
2593 |
+
"<extra_id_156>",
|
2594 |
+
"<extra_id_157>",
|
2595 |
+
"<extra_id_158>",
|
2596 |
+
"<extra_id_159>",
|
2597 |
+
"<extra_id_160>",
|
2598 |
+
"<extra_id_161>",
|
2599 |
+
"<extra_id_162>",
|
2600 |
+
"<extra_id_163>",
|
2601 |
+
"<extra_id_164>",
|
2602 |
+
"<extra_id_165>",
|
2603 |
+
"<extra_id_166>",
|
2604 |
+
"<extra_id_167>",
|
2605 |
+
"<extra_id_168>",
|
2606 |
+
"<extra_id_169>",
|
2607 |
+
"<extra_id_170>",
|
2608 |
+
"<extra_id_171>",
|
2609 |
+
"<extra_id_172>",
|
2610 |
+
"<extra_id_173>",
|
2611 |
+
"<extra_id_174>",
|
2612 |
+
"<extra_id_175>",
|
2613 |
+
"<extra_id_176>",
|
2614 |
+
"<extra_id_177>",
|
2615 |
+
"<extra_id_178>",
|
2616 |
+
"<extra_id_179>",
|
2617 |
+
"<extra_id_180>",
|
2618 |
+
"<extra_id_181>",
|
2619 |
+
"<extra_id_182>",
|
2620 |
+
"<extra_id_183>",
|
2621 |
+
"<extra_id_184>",
|
2622 |
+
"<extra_id_185>",
|
2623 |
+
"<extra_id_186>",
|
2624 |
+
"<extra_id_187>",
|
2625 |
+
"<extra_id_188>",
|
2626 |
+
"<extra_id_189>",
|
2627 |
+
"<extra_id_190>",
|
2628 |
+
"<extra_id_191>",
|
2629 |
+
"<extra_id_192>",
|
2630 |
+
"<extra_id_193>",
|
2631 |
+
"<extra_id_194>",
|
2632 |
+
"<extra_id_195>",
|
2633 |
+
"<extra_id_196>",
|
2634 |
+
"<extra_id_197>",
|
2635 |
+
"<extra_id_198>",
|
2636 |
+
"<extra_id_199>",
|
2637 |
+
"<extra_id_200>",
|
2638 |
+
"<extra_id_201>",
|
2639 |
+
"<extra_id_202>",
|
2640 |
+
"<extra_id_203>",
|
2641 |
+
"<extra_id_204>",
|
2642 |
+
"<extra_id_205>",
|
2643 |
+
"<extra_id_206>",
|
2644 |
+
"<extra_id_207>",
|
2645 |
+
"<extra_id_208>",
|
2646 |
+
"<extra_id_209>",
|
2647 |
+
"<extra_id_210>",
|
2648 |
+
"<extra_id_211>",
|
2649 |
+
"<extra_id_212>",
|
2650 |
+
"<extra_id_213>",
|
2651 |
+
"<extra_id_214>",
|
2652 |
+
"<extra_id_215>",
|
2653 |
+
"<extra_id_216>",
|
2654 |
+
"<extra_id_217>",
|
2655 |
+
"<extra_id_218>",
|
2656 |
+
"<extra_id_219>",
|
2657 |
+
"<extra_id_220>",
|
2658 |
+
"<extra_id_221>",
|
2659 |
+
"<extra_id_222>",
|
2660 |
+
"<extra_id_223>",
|
2661 |
+
"<extra_id_224>",
|
2662 |
+
"<extra_id_225>",
|
2663 |
+
"<extra_id_226>",
|
2664 |
+
"<extra_id_227>",
|
2665 |
+
"<extra_id_228>",
|
2666 |
+
"<extra_id_229>",
|
2667 |
+
"<extra_id_230>",
|
2668 |
+
"<extra_id_231>",
|
2669 |
+
"<extra_id_232>",
|
2670 |
+
"<extra_id_233>",
|
2671 |
+
"<extra_id_234>",
|
2672 |
+
"<extra_id_235>",
|
2673 |
+
"<extra_id_236>",
|
2674 |
+
"<extra_id_237>",
|
2675 |
+
"<extra_id_238>",
|
2676 |
+
"<extra_id_239>",
|
2677 |
+
"<extra_id_240>",
|
2678 |
+
"<extra_id_241>",
|
2679 |
+
"<extra_id_242>",
|
2680 |
+
"<extra_id_243>",
|
2681 |
+
"<extra_id_244>",
|
2682 |
+
"<extra_id_245>",
|
2683 |
+
"<extra_id_246>",
|
2684 |
+
"<extra_id_247>",
|
2685 |
+
"<extra_id_248>",
|
2686 |
+
"<extra_id_249>",
|
2687 |
+
"<extra_id_250>",
|
2688 |
+
"<extra_id_251>",
|
2689 |
+
"<extra_id_252>",
|
2690 |
+
"<extra_id_253>",
|
2691 |
+
"<extra_id_254>",
|
2692 |
+
"<extra_id_255>",
|
2693 |
+
"<extra_id_256>",
|
2694 |
+
"<extra_id_257>",
|
2695 |
+
"<extra_id_258>",
|
2696 |
+
"<extra_id_259>",
|
2697 |
+
"<extra_id_260>",
|
2698 |
+
"<extra_id_261>",
|
2699 |
+
"<extra_id_262>",
|
2700 |
+
"<extra_id_263>",
|
2701 |
+
"<extra_id_264>",
|
2702 |
+
"<extra_id_265>",
|
2703 |
+
"<extra_id_266>",
|
2704 |
+
"<extra_id_267>",
|
2705 |
+
"<extra_id_268>",
|
2706 |
+
"<extra_id_269>",
|
2707 |
+
"<extra_id_270>",
|
2708 |
+
"<extra_id_271>",
|
2709 |
+
"<extra_id_272>",
|
2710 |
+
"<extra_id_273>",
|
2711 |
+
"<extra_id_274>",
|
2712 |
+
"<extra_id_275>",
|
2713 |
+
"<extra_id_276>",
|
2714 |
+
"<extra_id_277>",
|
2715 |
+
"<extra_id_278>",
|
2716 |
+
"<extra_id_279>",
|
2717 |
+
"<extra_id_280>",
|
2718 |
+
"<extra_id_281>",
|
2719 |
+
"<extra_id_282>",
|
2720 |
+
"<extra_id_283>",
|
2721 |
+
"<extra_id_284>",
|
2722 |
+
"<extra_id_285>",
|
2723 |
+
"<extra_id_286>",
|
2724 |
+
"<extra_id_287>",
|
2725 |
+
"<extra_id_288>",
|
2726 |
+
"<extra_id_289>",
|
2727 |
+
"<extra_id_290>",
|
2728 |
+
"<extra_id_291>",
|
2729 |
+
"<extra_id_292>",
|
2730 |
+
"<extra_id_293>",
|
2731 |
+
"<extra_id_294>",
|
2732 |
+
"<extra_id_295>",
|
2733 |
+
"<extra_id_296>",
|
2734 |
+
"<extra_id_297>",
|
2735 |
+
"<extra_id_298>",
|
2736 |
+
"<extra_id_299>"
|
2737 |
+
],
|
2738 |
+
"bos_token": "<s>",
|
2739 |
+
"clean_up_tokenization_spaces": true,
|
2740 |
+
"eos_token": "</s>",
|
2741 |
+
"extra_ids": 300,
|
2742 |
+
"legacy": false,
|
2743 |
+
"model_max_length": 1000000000000000019884624838656,
|
2744 |
+
"pad_token": "<pad>",
|
2745 |
+
"sp_model_kwargs": {},
|
2746 |
+
"spaces_between_special_tokens": false,
|
2747 |
+
"tokenizer_class": "OpenMoeTokenizer",
|
2748 |
+
"trust_remote_code": true,
|
2749 |
+
"unk_token": "<unk>",
|
2750 |
+
"verbose": false,
|
2751 |
+
"auto_map": {
|
2752 |
+
"AutoTokenizer": [
|
2753 |
+
"tokenization_openmoe.OpenMoeTokenizer",
|
2754 |
+
null
|
2755 |
+
]
|
2756 |
+
}
|
2757 |
+
}
|