OpenNLPLab
commited on
Commit
•
ec22eda
1
Parent(s):
d58788d
Update README.md
Browse files
README.md
CHANGED
@@ -132,12 +132,14 @@ export use_triton=False
|
|
132 |
|
133 |
### Demonstration of Base Model Inference
|
134 |
|
|
|
|
|
135 |
```python
|
136 |
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
|
137 |
-
>>> tokenizer = AutoTokenizer.from_pretrained("OpenNLPLab/TransNormerLLM-
|
138 |
-
>>> model = AutoModelForCausalLM.from_pretrained("OpenNLPLab/TransNormerLLM-
|
139 |
>>> inputs = tokenizer('今天是美好的一天', return_tensors='pt')
|
140 |
-
>>> pred = model.generate(**inputs, max_new_tokens=
|
141 |
>>> print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
142 |
```
|
143 |
|
|
|
132 |
|
133 |
### Demonstration of Base Model Inference
|
134 |
|
135 |
+
**📝Note** Kindly utilize the model employing `bfloat16` instead of `float16`.
|
136 |
+
|
137 |
```python
|
138 |
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
|
139 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("OpenNLPLab/TransNormerLLM-7B", trust_remote_code=True)
|
140 |
+
>>> model = AutoModelForCausalLM.from_pretrained("OpenNLPLab/TransNormerLLM-7B", torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True)
|
141 |
>>> inputs = tokenizer('今天是美好的一天', return_tensors='pt')
|
142 |
+
>>> pred = model.generate(**inputs, max_new_tokens=4096, repetition_penalty=1.0)
|
143 |
>>> print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
144 |
```
|
145 |
|