|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import triton |
|
import triton.language as tl |
|
|
|
|
|
@triton.jit |
|
def _fwd_kernel( |
|
Q, |
|
K, |
|
V, |
|
Out, |
|
S, |
|
stride_qz, |
|
stride_qh, |
|
stride_qm, |
|
stride_qk, |
|
stride_kz, |
|
stride_kh, |
|
stride_kn, |
|
stride_kk, |
|
stride_vz, |
|
stride_vh, |
|
stride_vn, |
|
stride_ve, |
|
stride_oz, |
|
stride_oh, |
|
stride_om, |
|
stride_oe, |
|
stride_sh, |
|
Z, |
|
H, |
|
N_CTX, |
|
BLOCK_M: tl.constexpr, |
|
BLOCK_DMODEL_QK: tl.constexpr, |
|
BLOCK_N: tl.constexpr, |
|
BLOCK_DMODEL_V: tl.constexpr, |
|
IS_CAUSAL: tl.constexpr, |
|
USE_DECAY: tl.constexpr, |
|
): |
|
start_m = tl.program_id(0) |
|
off_hz = tl.program_id(1) |
|
off_h = off_hz % H |
|
|
|
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) |
|
offs_n = tl.arange(0, BLOCK_N) |
|
offs_k = tl.arange(0, BLOCK_DMODEL_QK) |
|
offs_e = tl.arange(0, BLOCK_DMODEL_V) |
|
|
|
off_q = (off_hz * stride_qh + offs_m[:, None] * stride_qm + |
|
offs_k[None, :] * stride_qk) |
|
off_k = (off_hz * stride_kh + offs_n[:, None] * stride_kn + |
|
offs_k[None, :] * stride_kk) |
|
off_v = (off_hz * stride_vh + offs_n[:, None] * stride_vn + |
|
offs_e[None, :] * stride_ve) |
|
off_o = (off_hz * stride_oh + offs_m[:, None] * stride_om + |
|
offs_e[None, :] * stride_oe) |
|
|
|
|
|
q_ptrs = Q + off_q |
|
k_ptrs = K + off_k |
|
v_ptrs = V + off_v |
|
|
|
|
|
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL_V], dtype=tl.float32) |
|
|
|
q = tl.load(q_ptrs, mask=offs_m[:, None] < N_CTX, other=0.0) |
|
|
|
lo = 0 |
|
|
|
hi = (start_m + 1) * BLOCK_M if IS_CAUSAL else N_CTX |
|
for start_n in range(lo, hi, BLOCK_N): |
|
|
|
k = tl.load( |
|
k_ptrs + start_n * stride_kn, |
|
mask=(start_n + offs_n)[:, None] < N_CTX, |
|
other=0.0, |
|
) |
|
v = tl.load( |
|
v_ptrs + start_n * stride_vn, |
|
mask=(start_n + offs_n)[:, None] < N_CTX, |
|
other=0.0, |
|
) |
|
|
|
|
|
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) |
|
|
|
qk += tl.dot(q, tl.trans(k)) |
|
if IS_CAUSAL: |
|
index = offs_m[:, None] - (start_n + offs_n[None, :]) |
|
if USE_DECAY: |
|
S_block_ptr = S + off_h * stride_sh |
|
s = tl.load(S_block_ptr) |
|
s_index = s * index |
|
s_index = tl.where(s_index >= 0, -s_index, float("-inf")) |
|
qk = tl.exp(s_index) * qk |
|
else: |
|
qk = tl.where(index >= 0, qk, 0) |
|
acc += tl.dot(qk, v.to(qk.dtype)) |
|
|
|
out_ptrs = Out + off_o |
|
tl.store(out_ptrs, acc.to(q.dtype), mask=offs_m[:, None] < N_CTX) |
|
|
|
|
|
@triton.jit |
|
def _bwd_kernel_kv( |
|
Q, |
|
K, |
|
V, |
|
S, |
|
DO, |
|
DQ, |
|
DK, |
|
DV, |
|
stride_qz, |
|
stride_qh, |
|
stride_qm, |
|
stride_qk, |
|
stride_kz, |
|
stride_kh, |
|
stride_kn, |
|
stride_kk, |
|
stride_vz, |
|
stride_vh, |
|
stride_vn, |
|
stride_ve, |
|
stride_oz, |
|
stride_oh, |
|
stride_om, |
|
stride_oe, |
|
stride_sh, |
|
Z, |
|
H, |
|
N_CTX, |
|
num_block, |
|
BLOCK_M: tl.constexpr, |
|
BLOCK_DMODEL_QK: tl.constexpr, |
|
BLOCK_N: tl.constexpr, |
|
BLOCK_DMODEL_V: tl.constexpr, |
|
CAUSAL: tl.constexpr, |
|
USE_DECAY: tl.constexpr, |
|
): |
|
start_n = tl.program_id(0) |
|
off_hz = tl.program_id(1) |
|
|
|
off_z = off_hz // H |
|
off_h = off_hz % H |
|
|
|
Q += off_z * stride_qz + off_h * stride_qh |
|
K += off_z * stride_kz + off_h * stride_kh |
|
V += off_z * stride_vz + off_h * stride_vh |
|
DO += off_z * stride_oz + off_h * stride_oh |
|
DQ += off_z * stride_qz + off_h * stride_qh |
|
DK += off_z * stride_kz + off_h * stride_kh |
|
DV += off_z * stride_vz + off_h * stride_vh |
|
|
|
|
|
if CAUSAL: |
|
lo = start_n * BLOCK_M |
|
else: |
|
lo = 0 |
|
|
|
|
|
offs_qm = lo + tl.arange(0, BLOCK_M) |
|
offs_kvn = start_n * BLOCK_N + tl.arange(0, BLOCK_N) |
|
|
|
offs_qkk = tl.arange(0, BLOCK_DMODEL_QK) |
|
offs_ve = tl.arange(0, BLOCK_DMODEL_V) |
|
|
|
offs_m = tl.arange(0, BLOCK_M) |
|
|
|
q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_qkk[None, :] * stride_qk) |
|
k_ptrs = K + (offs_kvn[:, None] * stride_kn + |
|
offs_qkk[None, :] * stride_kk) |
|
v_ptrs = V + (offs_kvn[:, None] * stride_vn + offs_ve[None, :] * stride_ve) |
|
do_ptrs = DO + (offs_qm[:, None] * stride_om + |
|
offs_ve[None, :] * stride_oe) |
|
dq_ptrs = DQ + (offs_qm[:, None] * stride_qm + |
|
offs_qkk[None, :] * stride_qk) |
|
|
|
dv = tl.zeros([BLOCK_N, BLOCK_DMODEL_V], dtype=tl.float32) |
|
dk = tl.zeros([BLOCK_N, BLOCK_DMODEL_QK], dtype=tl.float32) |
|
|
|
k = tl.load(k_ptrs, mask=offs_kvn[:, None] < N_CTX, other=0.0) |
|
v = tl.load(v_ptrs, mask=offs_kvn[:, None] < N_CTX, other=0.0) |
|
|
|
for start_m in range(lo, num_block * BLOCK_M, BLOCK_M): |
|
offs_m_curr = start_m + offs_m |
|
|
|
q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < N_CTX, other=0.0) |
|
qk = tl.dot(q, tl.trans(k)) |
|
|
|
if CAUSAL: |
|
index = offs_m_curr[:, None] - offs_kvn[None, :] |
|
if USE_DECAY: |
|
S_block_ptr = S + off_h * stride_sh |
|
s = tl.load(S_block_ptr) |
|
s_index = s * index |
|
s_index = tl.where(s_index >= 0, -s_index, float("-inf")) |
|
s = tl.exp(s_index) |
|
qk = qk * s |
|
else: |
|
qk = tl.where(index >= 0, qk, 0) |
|
|
|
p = qk |
|
|
|
do = tl.load(do_ptrs, mask=offs_m_curr[:, None] < N_CTX, other=0.0) |
|
dv += tl.dot(tl.trans(p.to(do.dtype)), do) |
|
dp = tl.dot(do, tl.trans(v).to(do.dtype)) |
|
if CAUSAL: |
|
if USE_DECAY: |
|
dp = dp * s |
|
else: |
|
dp = tl.where(index >= 0, dp, 0) |
|
|
|
dk += tl.dot(tl.trans(dp.to(q.dtype)), q).to(tl.float32) |
|
|
|
|
|
q_ptrs += BLOCK_M * stride_qm |
|
do_ptrs += BLOCK_M * stride_om |
|
|
|
dv_ptrs = DV + (offs_kvn[:, None] * stride_vn + |
|
offs_ve[None, :] * stride_ve) |
|
dk_ptrs = DK + (offs_kvn[:, None] * stride_kn + |
|
offs_qkk[None, :] * stride_kk) |
|
tl.store(dv_ptrs, dv, mask=offs_kvn[:, None] < N_CTX) |
|
tl.store(dk_ptrs, dk, mask=offs_kvn[:, None] < N_CTX) |
|
|
|
|
|
@triton.jit |
|
def _bwd_kernel_q( |
|
Q, |
|
K, |
|
V, |
|
S, |
|
DO, |
|
DQ, |
|
DK, |
|
DV, |
|
stride_qz, |
|
stride_qh, |
|
stride_qm, |
|
stride_qk, |
|
stride_kz, |
|
stride_kh, |
|
stride_kn, |
|
stride_kk, |
|
stride_vz, |
|
stride_vh, |
|
stride_vn, |
|
stride_ve, |
|
stride_oz, |
|
stride_oh, |
|
stride_om, |
|
stride_oe, |
|
stride_sh, |
|
Z, |
|
H, |
|
N_CTX, |
|
num_block, |
|
BLOCK_M: tl.constexpr, |
|
BLOCK_DMODEL_QK: tl.constexpr, |
|
BLOCK_N: tl.constexpr, |
|
BLOCK_DMODEL_V: tl.constexpr, |
|
CAUSAL: tl.constexpr, |
|
USE_DECAY: tl.constexpr, |
|
): |
|
start_m = tl.program_id(0) |
|
off_hz = tl.program_id(1) |
|
off_z = off_hz // H |
|
off_h = off_hz % H |
|
|
|
K += off_z * stride_kz + off_h * stride_kh |
|
V += off_z * stride_vz + off_h * stride_vh |
|
DO += off_z * stride_oz + off_h * stride_oh |
|
DQ += off_z * stride_qz + off_h * stride_qh |
|
|
|
offs_qkk = tl.arange(0, BLOCK_DMODEL_QK) |
|
offs_ve = tl.arange(0, BLOCK_DMODEL_V) |
|
|
|
offs_m = tl.arange(0, BLOCK_M) |
|
|
|
offs_qm = start_m * BLOCK_M + tl.arange(0, BLOCK_M) |
|
|
|
do_ptrs = DO + (offs_qm[:, None] * stride_om + |
|
offs_ve[None, :] * stride_oe) |
|
dq_ptrs = DQ + (offs_qm[:, None] * stride_qm + |
|
offs_qkk[None, :] * stride_qk) |
|
|
|
do = tl.load(do_ptrs, mask=offs_qm[:, None] < N_CTX, other=0.0) |
|
|
|
dq = tl.zeros([BLOCK_M, BLOCK_DMODEL_QK], dtype=tl.float32) |
|
lo = 0 |
|
hi = (start_m + 1) * BLOCK_M if CAUSAL else N_CTX |
|
|
|
offs_m_curr = start_m * BLOCK_M + offs_m |
|
|
|
for start_n in range(0, num_block): |
|
offs_kvn = start_n * BLOCK_N + tl.arange(0, BLOCK_N) |
|
k_ptrs = K + (offs_kvn[:, None] * stride_kn + |
|
offs_qkk[None, :] * stride_kk) |
|
v_ptrs = V + (offs_kvn[:, None] * stride_vn + |
|
offs_ve[None, :] * stride_ve) |
|
|
|
k = tl.load(k_ptrs, mask=offs_kvn[:, None] < N_CTX, other=0.0) |
|
v = tl.load(v_ptrs, mask=offs_kvn[:, None] < N_CTX, other=0.0) |
|
|
|
dp = tl.dot(do, tl.trans(v).to(do.dtype)) |
|
if CAUSAL: |
|
index = offs_m_curr[:, None] - offs_kvn[None, :] |
|
if USE_DECAY: |
|
S_block_ptr = S + off_h * stride_sh |
|
s = tl.load(S_block_ptr) |
|
s_index = s * index |
|
s_index = tl.where(s_index >= 0, -s_index, float("-inf")) |
|
s = tl.exp(s_index) |
|
dp = dp * s |
|
else: |
|
dp = tl.where(index >= 0, dp, 0) |
|
|
|
dq += tl.dot(dp.to(k.dtype), k) |
|
|
|
tl.store(dq_ptrs, dq, mask=offs_qm[:, None] < N_CTX) |
|
|
|
|
|
class _attention(torch.autograd.Function): |
|
|
|
@staticmethod |
|
def forward(ctx, q, k, v, causal, s): |
|
q = q.contiguous() |
|
k = k.contiguous() |
|
v = v.contiguous() |
|
s = s.contiguous() |
|
|
|
capability = torch.cuda.get_device_capability() |
|
if capability[0] < 8: |
|
raise RuntimeError( |
|
"Flash attention currently only supported for compute capability >= 80" |
|
) |
|
|
|
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1] |
|
|
|
o = torch.empty( |
|
(q.shape[0], q.shape[1], q.shape[2], v.shape[-1]), |
|
dtype=q.dtype, |
|
device=q.device, |
|
) |
|
|
|
BLOCK_M = 128 |
|
BLOCK_N = 64 |
|
num_warps = 4 if Lk <= 64 else 8 |
|
num_stages = 1 |
|
|
|
grid = (triton.cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1], 1) |
|
use_decay = s.shape[0] > 0 |
|
|
|
_fwd_kernel[grid]( |
|
q, |
|
k, |
|
v, |
|
o, |
|
s, |
|
q.stride(0), |
|
q.stride(1), |
|
q.stride(2), |
|
q.stride(3), |
|
k.stride(0), |
|
k.stride(1), |
|
k.stride(2), |
|
k.stride(3), |
|
v.stride(0), |
|
v.stride(1), |
|
v.stride(2), |
|
v.stride(3), |
|
o.stride(0), |
|
o.stride(1), |
|
o.stride(2), |
|
o.stride(3), |
|
s.stride(0), |
|
q.shape[0], |
|
q.shape[1], |
|
q.shape[2], |
|
BLOCK_M=BLOCK_M, |
|
BLOCK_DMODEL_QK=Lk, |
|
BLOCK_N=BLOCK_N, |
|
BLOCK_DMODEL_V=Lv, |
|
IS_CAUSAL=causal, |
|
USE_DECAY=use_decay, |
|
num_warps=num_warps, |
|
num_stages=num_stages, |
|
) |
|
|
|
ctx.save_for_backward(q, k, v, s) |
|
ctx.grid = grid |
|
ctx.BLOCK_M = BLOCK_M |
|
ctx.BLOCK_DMODEL_QK = Lk |
|
ctx.BLOCK_N = BLOCK_N |
|
ctx.BLOCK_DMODEL_V = Lv |
|
ctx.causal = causal |
|
ctx.use_decay = use_decay |
|
return o |
|
|
|
@staticmethod |
|
def backward(ctx, do): |
|
q, k, v, s = ctx.saved_tensors |
|
BLOCK_M = 32 |
|
BLOCK_N = 32 |
|
num_warps = 4 |
|
num_stages = 1 |
|
|
|
do = do.contiguous() |
|
dq = torch.zeros_like(q, dtype=torch.float32) |
|
dk = torch.empty_like(k) |
|
dv = torch.empty_like(v) |
|
|
|
grid_kv = (triton.cdiv(k.shape[2], |
|
BLOCK_N), k.shape[0] * k.shape[1], 1) |
|
_bwd_kernel_kv[grid_kv]( |
|
q, |
|
k, |
|
v, |
|
s, |
|
do, |
|
dq, |
|
dk, |
|
dv, |
|
q.stride(0), |
|
q.stride(1), |
|
q.stride(2), |
|
q.stride(3), |
|
k.stride(0), |
|
k.stride(1), |
|
k.stride(2), |
|
k.stride(3), |
|
v.stride(0), |
|
v.stride(1), |
|
v.stride(2), |
|
v.stride(3), |
|
do.stride(0), |
|
do.stride(1), |
|
do.stride(2), |
|
do.stride(3), |
|
s.stride(0), |
|
q.shape[0], |
|
q.shape[1], |
|
q.shape[2], |
|
grid_kv[0], |
|
BLOCK_M=BLOCK_M, |
|
BLOCK_DMODEL_QK=ctx.BLOCK_DMODEL_QK, |
|
BLOCK_N=BLOCK_N, |
|
BLOCK_DMODEL_V=ctx.BLOCK_DMODEL_V, |
|
CAUSAL=ctx.causal, |
|
USE_DECAY=ctx.use_decay, |
|
num_warps=num_warps, |
|
num_stages=num_stages, |
|
) |
|
|
|
grid_q = (triton.cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1], 1) |
|
|
|
_bwd_kernel_q[grid_q]( |
|
q, |
|
k, |
|
v, |
|
s, |
|
do, |
|
dq, |
|
dk, |
|
dv, |
|
q.stride(0), |
|
q.stride(1), |
|
q.stride(2), |
|
q.stride(3), |
|
k.stride(0), |
|
k.stride(1), |
|
k.stride(2), |
|
k.stride(3), |
|
v.stride(0), |
|
v.stride(1), |
|
v.stride(2), |
|
v.stride(3), |
|
do.stride(0), |
|
do.stride(1), |
|
do.stride(2), |
|
do.stride(3), |
|
s.stride(0), |
|
q.shape[0], |
|
q.shape[1], |
|
q.shape[2], |
|
grid_q[0], |
|
BLOCK_M=BLOCK_M, |
|
BLOCK_DMODEL_QK=ctx.BLOCK_DMODEL_QK, |
|
BLOCK_N=BLOCK_N, |
|
BLOCK_DMODEL_V=ctx.BLOCK_DMODEL_V, |
|
CAUSAL=ctx.causal, |
|
USE_DECAY=ctx.use_decay, |
|
num_warps=num_warps, |
|
num_stages=num_stages, |
|
) |
|
|
|
return dq.to(q.dtype), dk, dv, None, None |
|
|
|
|
|
attention = _attention.apply |
|
|
|
|
|
def lightning_attention(q, k, v, causal, ed): |
|
d = q.shape[-1] |
|
e = v.shape[-1] |
|
|
|
if d >= 128: |
|
m = 128 |
|
else: |
|
m = 64 |
|
arr = [m * i for i in range(d // m + 1)] |
|
if arr[-1] != d: |
|
arr.append(d) |
|
n = len(arr) |
|
output = 0 |
|
for i in range(n - 1): |
|
s = arr[i] |
|
e = arr[i + 1] |
|
q1 = q[..., s:e] |
|
k1 = k[..., s:e] |
|
o = attention(q1, k1, v, causal, ed) |
|
output = output + o |
|
|
|
return output |
|
|