SunSiShining's picture
Create README.md
af152ee
---
license: mit
---
This model is ANCE-Tele trained on MS MARCO. The training details and evaluation results are as follows:
|Model|Pretrain Model|Train w/ Marco Title|Marco Dev MRR@10|BEIR Avg NDCG@10|
|:----|:----|:----|:----|:----|
|ANCE-Tele|[cocodr-base](https://huggingface.co/OpenMatch/cocodr-base)|w/o|37.3|44.2|
|BERI Dataset|NDCG@10|
|:----|:----|
|TREC-COVID|77.4|
|NFCorpus|34.4 |
|FiQA|29.0 |
|ArguAna|45.6 |
|Touché-2020|22.3 |
|Quora|85.8 |
|SCIDOCS|14.6 |
|SciFact|71.0 |
|NQ|50.5 |
|HotpotQA|58.8 |
|Signal-1M|27.2 |
|TREC-NEWS|34.7 |
|DBPedia-entity|36.2 |
|Fever|71.4 |
|Climate-Fever|17.9 |
|BioASQ|42.1 |
|Robust04|41.4 |
|CQADupStack|34.9 |
The implementation is the same as our EMNLP 2022 paper ["Reduce Catastrophic Forgetting of Dense Retrieval Training with Teleportation Negatives"](https://arxiv.org/pdf/2210.17167.pdf). The associated GitHub repository is available at https://github.com/OpenMatch/ANCE-Tele.
```
@inproceedings{sun2022ancetele,
title={Reduce Catastrophic Forgetting of Dense Retrieval Training with Teleportation Negatives},
author={Si, Sun and Chenyan, Xiong and Yue, Yu and Arnold, Overwijk and Zhiyuan, Liu and Jie, Bao},
booktitle={Proceedings of EMNLP 2022},
year={2022}
}
```