tianbaoxiexxx commited on
Commit
1f54b88
·
1 Parent(s): 86ba6fc

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-generation
3
+ inference: true
4
+ widget:
5
+ - text: 'def factorial(n):'
6
+ example_title: Factorial
7
+ group: Python
8
+ - text: 'def recur_fibo(n):'
9
+ example_title: Recursive Fibonacci
10
+ group: Python
11
+ license: llama2
12
+ library_name: transformers
13
+ tags:
14
+ - text-generation
15
+ - code
16
+ language:
17
+ - en
18
+ ---
19
+
20
+ # lemur-70b-v1
21
+
22
+ <p align="center">
23
+ <img src="https://huggingface.co/datasets/OpenLemur/assets/resolve/main/lemur_icon.png" width="300" height="300" alt="Lemur">
24
+ </p>
25
+
26
+
27
+ ## Model Summary
28
+
29
+ - **Repository:** [OpenLemur/lemur-v1](https://github.com/OpenLemur/lemur-v1)
30
+ - **Project Website:** [xlang.ai](https://www.xlang.ai/)
31
+ - **Paper:** [Coming soon](https://www.xlang.ai/)
32
+ - **Point of Contact:** [mail@xlang.ai](mailto:mail@xlang.ai)
33
+
34
+ ## Use
35
+
36
+ ### Setup
37
+
38
+ First, we have to install all the libraries listed in `requirements.txt` in [GitHub](https://github.com/OpenLemur/lemur-v1):
39
+
40
+ ```bash
41
+ pip install -r requirements.txt
42
+ ```
43
+
44
+ ### Intended use
45
+
46
+ Since it is not trained on instruction following corpus, it won't respond well to questions like "What is the Python code to do quick sort?".
47
+
48
+ ### Generation
49
+
50
+ ```python
51
+ from transformers import AutoTokenizer, AutoModelForCausalLM
52
+
53
+ tokenizer = AutoTokenizer.from_pretrained("OpenLemur/lemur-70b-v1")
54
+ model = AutoModelForCausalLM.from_pretrained("OpenLemur/lemur-70b-v1", device_map="auto", load_in_8bit=True)
55
+
56
+ # Text Generation Example
57
+ prompt = "The world is "
58
+ input = tokenizer(prompt, return_tensors="pt")
59
+ output = model.generate(**input, max_length=50, num_return_sequences=1)
60
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
61
+ print(generated_text)
62
+
63
+ # Code Generation Example
64
+ prompt = """
65
+ def factorial(n):
66
+ if n == 0:
67
+ return 1
68
+ """
69
+ input = tokenizer(prompt, return_tensors="pt")
70
+ output = model.generate(**input, max_length=200, num_return_sequences=1)
71
+ generated_code = tokenizer.decode(output[0], skip_special_tokens=True)
72
+ print(generated_code)
73
+ ```
74
+
75
+ # License
76
+ The model is licensed under the Llama-2 community license agreement.