Update README.md
Browse files
README.md
CHANGED
@@ -48,14 +48,26 @@ tokenizer = AutoTokenizer.from_pretrained("OpenLemur/lemur-70b-chat-v1")
|
|
48 |
model = AutoModelForCausalLM.from_pretrained("OpenLemur/lemur-70b-chat-v1", device_map="auto", load_in_8bit=True)
|
49 |
|
50 |
# Text Generation Example
|
51 |
-
prompt = "
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
input = tokenizer(prompt, return_tensors="pt")
|
53 |
output = model.generate(**input, max_length=50, num_return_sequences=1)
|
54 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
55 |
print(generated_text)
|
56 |
|
57 |
# Code Generation Example
|
58 |
-
prompt = "
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
input = tokenizer(prompt, return_tensors="pt")
|
60 |
output = model.generate(**input, max_length=200, num_return_sequences=1)
|
61 |
generated_code = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
48 |
model = AutoModelForCausalLM.from_pretrained("OpenLemur/lemur-70b-chat-v1", device_map="auto", load_in_8bit=True)
|
49 |
|
50 |
# Text Generation Example
|
51 |
+
prompt = """<|im_start|>system
|
52 |
+
You are a helpful, respectful, and honest assistant.
|
53 |
+
<|im_end|>
|
54 |
+
<|im_start|>user
|
55 |
+
What's a lemur's favorite fruit?<|im_end|>
|
56 |
+
<|im_start|>assistant
|
57 |
+
"""
|
58 |
input = tokenizer(prompt, return_tensors="pt")
|
59 |
output = model.generate(**input, max_length=50, num_return_sequences=1)
|
60 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
61 |
print(generated_text)
|
62 |
|
63 |
# Code Generation Example
|
64 |
+
prompt = """<|im_start|>system
|
65 |
+
Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
66 |
+
<|im_end|>
|
67 |
+
<|im_start|>user
|
68 |
+
Write a Python function to merge two sorted lists into one sorted list without using any built-in sort functions.<|im_end|>
|
69 |
+
<|im_start|>assistant
|
70 |
+
"""
|
71 |
input = tokenizer(prompt, return_tensors="pt")
|
72 |
output = model.generate(**input, max_length=200, num_return_sequences=1)
|
73 |
generated_code = tokenizer.decode(output[0], skip_special_tokens=True)
|