Update README.md
Browse files
README.md
CHANGED
@@ -4,6 +4,489 @@ language:
|
|
4 |
- ro
|
5 |
base_model:
|
6 |
- mistralai/Mistral-7B-v0.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
---
|
8 |
|
9 |
# Model Card for Model ID
|
@@ -27,6 +510,7 @@ OpenLLM-Ro represents the first open-source effort to build a LLM specialized fo
|
|
27 |
- **Language(s):** Romanian
|
28 |
- **License:** cc-by-nc-4.0
|
29 |
- **Finetuned from model:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
|
|
30 |
|
31 |
<!-- - **Finetuned from model [optional]:** [More Information Needed] -->
|
32 |
|
@@ -34,7 +518,7 @@ OpenLLM-Ro represents the first open-source effort to build a LLM specialized fo
|
|
34 |
|
35 |
<!-- Provide the basic links for the model. -->
|
36 |
|
37 |
-
- **Repository:** https://github.com/OpenLLM-Ro/
|
38 |
- **Paper:** https://arxiv.org/abs/2406.18266
|
39 |
|
40 |
## Intended Use
|
@@ -72,30 +556,139 @@ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
|
|
72 |
print(tokenizer.decode(outputs[0]))
|
73 |
```
|
74 |
|
75 |
-
## Benchmarks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
| Model | Average | ARC | MMLU |Winogrande|HellaSwag | GSM8k |TruthfulQA|
|
78 |
-
|--------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
79 |
-
| Mistral-7B-Instruct-v0.2| 47.41 | 46.25 | 47.04 | 58.72 | 54.25 | 13.59 | *64.63* |
|
80 |
-
| *RoMistral-7b-Instruct* | ***52.49*** | ***50.39*** | ***51.64*** | ***66.69*** | ***60.24*** | ***33.71*** | 52.59 |
|
81 |
-
|
82 |
|
83 |
## MT-Bench
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
## RoCulturaBench
|
92 |
|
93 |
-
| Model | Score | Answers in Ro|
|
94 |
-
|--------------------|:--------:|:--------:|
|
95 |
-
| Mistral-7B-Instruct-v0.2 | **3.75** | 99 / 100 |
|
96 |
-
|*RoMistral-7b-Instruct*| *3.17*| ***100 / 100*** |
|
97 |
|
|
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
|
101 |
|
|
|
4 |
- ro
|
5 |
base_model:
|
6 |
- mistralai/Mistral-7B-v0.1
|
7 |
+
datasets:
|
8 |
+
- OpenLLM-Ro/ro_sft_alpaca
|
9 |
+
- OpenLLM-Ro/ro_sft_alpaca_gpt4
|
10 |
+
- OpenLLM-Ro/ro_sft_dolly
|
11 |
+
- OpenLLM-Ro/ro_sft_selfinstruct_gpt4
|
12 |
+
- OpenLLM-Ro/ro_sft_norobots
|
13 |
+
- OpenLLM-Ro/ro_sft_orca
|
14 |
+
- OpenLLM-Ro/ro_sft_camel
|
15 |
+
model-index:
|
16 |
+
- name: OpenLLM-Ro/RoMistral-7b-Instruct
|
17 |
+
results:
|
18 |
+
- task:
|
19 |
+
type: text-generation
|
20 |
+
dataset:
|
21 |
+
name: RoMT-Bench
|
22 |
+
type: RoMT-Bench
|
23 |
+
metrics:
|
24 |
+
- name: Score
|
25 |
+
type: Score
|
26 |
+
value: 4.99
|
27 |
+
- task:
|
28 |
+
type: text-generation
|
29 |
+
dataset:
|
30 |
+
name: RoCulturaBench
|
31 |
+
type: RoCulturaBench
|
32 |
+
metrics:
|
33 |
+
- name: Score
|
34 |
+
type: Score
|
35 |
+
value: 3.38
|
36 |
+
- task:
|
37 |
+
type: text-generation
|
38 |
+
dataset:
|
39 |
+
name: Romanian_Academic_Benchmarks
|
40 |
+
type: Romanian_Academic_Benchmarks
|
41 |
+
metrics:
|
42 |
+
- name: Average accuracy
|
43 |
+
type: accuracy
|
44 |
+
value: 52.54
|
45 |
+
- task:
|
46 |
+
type: text-generation
|
47 |
+
dataset:
|
48 |
+
name: OpenLLM-Ro/ro_arc_challenge
|
49 |
+
type: OpenLLM-Ro/ro_arc_challenge
|
50 |
+
metrics:
|
51 |
+
- name: Average accuracy
|
52 |
+
type: accuracy
|
53 |
+
value: 50.41
|
54 |
+
- task:
|
55 |
+
type: text-generation
|
56 |
+
dataset:
|
57 |
+
name: OpenLLM-Ro/ro_mmlu
|
58 |
+
type: OpenLLM-Ro/ro_mmlu
|
59 |
+
metrics:
|
60 |
+
- name: Average accuracy
|
61 |
+
type: accuracy
|
62 |
+
value: 51.61
|
63 |
+
- task:
|
64 |
+
type: text-generation
|
65 |
+
dataset:
|
66 |
+
name: OpenLLM-Ro/ro_winogrande
|
67 |
+
type: OpenLLM-Ro/ro_winogrande
|
68 |
+
metrics:
|
69 |
+
- name: Average accuracy
|
70 |
+
type: accuracy
|
71 |
+
value: 66.48
|
72 |
+
- task:
|
73 |
+
type: text-generation
|
74 |
+
dataset:
|
75 |
+
name: OpenLLM-Ro/ro_hellaswag
|
76 |
+
type: OpenLLM-Ro/ro_hellaswag
|
77 |
+
metrics:
|
78 |
+
- name: Average accuracy
|
79 |
+
type: accuracy
|
80 |
+
value: 60.27
|
81 |
+
- task:
|
82 |
+
type: text-generation
|
83 |
+
dataset:
|
84 |
+
name: OpenLLM-Ro/ro_gsm8k
|
85 |
+
type: OpenLLM-Ro/ro_gsm8k
|
86 |
+
metrics:
|
87 |
+
- name: Average accuracy
|
88 |
+
type: accuracy
|
89 |
+
value: 34.19
|
90 |
+
- task:
|
91 |
+
type: text-generation
|
92 |
+
dataset:
|
93 |
+
name: OpenLLM-Ro/ro_truthfulqa
|
94 |
+
type: OpenLLM-Ro/ro_truthfulqa
|
95 |
+
metrics:
|
96 |
+
- name: Average accuracy
|
97 |
+
type: accuracy
|
98 |
+
value: 52.30
|
99 |
+
- task:
|
100 |
+
type: text-generation
|
101 |
+
dataset:
|
102 |
+
name: LaRoSeDa_binary
|
103 |
+
type: LaRoSeDa_binary
|
104 |
+
metrics:
|
105 |
+
- name: Average macro-f1
|
106 |
+
type: macro-f1
|
107 |
+
value: 97.36
|
108 |
+
- task:
|
109 |
+
type: text-generation
|
110 |
+
dataset:
|
111 |
+
name: LaRoSeDa_multiclass
|
112 |
+
type: LaRoSeDa_multiclass
|
113 |
+
metrics:
|
114 |
+
- name: Average macro-f1
|
115 |
+
type: macro-f1
|
116 |
+
value: 67.55
|
117 |
+
- task:
|
118 |
+
type: text-generation
|
119 |
+
dataset:
|
120 |
+
name: LaRoSeDa_binary_finetuned
|
121 |
+
type: LaRoSeDa_binary_finetuned
|
122 |
+
metrics:
|
123 |
+
- name: Average macro-f1
|
124 |
+
type: macro-f1
|
125 |
+
value: 98.80
|
126 |
+
- task:
|
127 |
+
type: text-generation
|
128 |
+
dataset:
|
129 |
+
name: LaRoSeDa_multiclass_finetuned
|
130 |
+
type: LaRoSeDa_multiclass_finetuned
|
131 |
+
metrics:
|
132 |
+
- name: Average macro-f1
|
133 |
+
type: macro-f1
|
134 |
+
value: 88.28
|
135 |
+
- task:
|
136 |
+
type: text-generation
|
137 |
+
dataset:
|
138 |
+
name: WMT_EN-RO
|
139 |
+
type: WMT_EN-RO
|
140 |
+
metrics:
|
141 |
+
- name: Average bleu
|
142 |
+
type: bleu
|
143 |
+
value: 27.93
|
144 |
+
- task:
|
145 |
+
type: text-generation
|
146 |
+
dataset:
|
147 |
+
name: WMT_RO-EN
|
148 |
+
type: WMT_RO-EN
|
149 |
+
metrics:
|
150 |
+
- name: Average bleu
|
151 |
+
type: bleu
|
152 |
+
value: 13.21
|
153 |
+
- task:
|
154 |
+
type: text-generation
|
155 |
+
dataset:
|
156 |
+
name: WMT_EN-RO_finetuned
|
157 |
+
type: WMT_EN-RO_finetuned
|
158 |
+
metrics:
|
159 |
+
- name: Average bleu
|
160 |
+
type: bleu
|
161 |
+
value: 28.72
|
162 |
+
- task:
|
163 |
+
type: text-generation
|
164 |
+
dataset:
|
165 |
+
name: WMT_RO-EN_finetuned
|
166 |
+
type: WMT_RO-EN_finetuned
|
167 |
+
metrics:
|
168 |
+
- name: Average bleu
|
169 |
+
type: bleu
|
170 |
+
value: 40.86
|
171 |
+
- task:
|
172 |
+
type: text-generation
|
173 |
+
dataset:
|
174 |
+
name: XQuAD
|
175 |
+
type: XQuAD
|
176 |
+
metrics:
|
177 |
+
- name: Average exact_match
|
178 |
+
type: exact_match
|
179 |
+
value: 43.66
|
180 |
+
- task:
|
181 |
+
type: text-generation
|
182 |
+
dataset:
|
183 |
+
name: XQuAD
|
184 |
+
type: XQuAD
|
185 |
+
metrics:
|
186 |
+
- name: Average f1
|
187 |
+
type: f1
|
188 |
+
value: 63.70
|
189 |
+
- task:
|
190 |
+
type: text-generation
|
191 |
+
dataset:
|
192 |
+
name: XQuAD_finetuned
|
193 |
+
type: XQuAD_finetuned
|
194 |
+
metrics:
|
195 |
+
- name: Average exact_match
|
196 |
+
type: exact_match
|
197 |
+
value: 55.04
|
198 |
+
- task:
|
199 |
+
type: text-generation
|
200 |
+
dataset:
|
201 |
+
name: XQuAD_finetuned
|
202 |
+
type: XQuAD_finetuned
|
203 |
+
metrics:
|
204 |
+
- name: Average f1
|
205 |
+
type: f1
|
206 |
+
value: 72.31
|
207 |
+
- task:
|
208 |
+
type: text-generation
|
209 |
+
dataset:
|
210 |
+
name: STS
|
211 |
+
type: STS
|
212 |
+
metrics:
|
213 |
+
- name: Average spearman
|
214 |
+
type: spearman
|
215 |
+
value: 77.43
|
216 |
+
- task:
|
217 |
+
type: text-generation
|
218 |
+
dataset:
|
219 |
+
name: STS
|
220 |
+
type: STS
|
221 |
+
metrics:
|
222 |
+
- name: Average pearson
|
223 |
+
type: pearson
|
224 |
+
value: 78.43
|
225 |
+
- task:
|
226 |
+
type: text-generation
|
227 |
+
dataset:
|
228 |
+
name: STS_finetuned
|
229 |
+
type: STS_finetuned
|
230 |
+
metrics:
|
231 |
+
- name: Average spearman
|
232 |
+
type: spearman
|
233 |
+
value: 87.25
|
234 |
+
- task:
|
235 |
+
type: text-generation
|
236 |
+
dataset:
|
237 |
+
name: STS_finetuned
|
238 |
+
type: STS_finetuned
|
239 |
+
metrics:
|
240 |
+
- name: Average pearson
|
241 |
+
type: pearson
|
242 |
+
value: 87.79
|
243 |
+
- task:
|
244 |
+
type: text-generation
|
245 |
+
dataset:
|
246 |
+
name: RoMT-Bench
|
247 |
+
type: RoMT-Bench
|
248 |
+
metrics:
|
249 |
+
- name: First turn
|
250 |
+
type: Score
|
251 |
+
value: 5.46
|
252 |
+
- name: Second turn
|
253 |
+
type: Score
|
254 |
+
value: 4.53
|
255 |
+
- task:
|
256 |
+
type: text-generation
|
257 |
+
dataset:
|
258 |
+
name: OpenLLM-Ro/ro_arc_challenge
|
259 |
+
type: OpenLLM-Ro/ro_arc_challenge
|
260 |
+
metrics:
|
261 |
+
- name: 0-shot
|
262 |
+
type: accuracy
|
263 |
+
value: 47.47
|
264 |
+
- name: 1-shot
|
265 |
+
type: accuracy
|
266 |
+
value: 48.59
|
267 |
+
- name: 3-shot
|
268 |
+
type: accuracy
|
269 |
+
value: 50.30
|
270 |
+
- name: 5-shot
|
271 |
+
type: accuracy
|
272 |
+
value: 51.33
|
273 |
+
- name: 10-shot
|
274 |
+
type: accuracy
|
275 |
+
value: 52.36
|
276 |
+
- name: 25-shot
|
277 |
+
type: accuracy
|
278 |
+
value: 52.44
|
279 |
+
- task:
|
280 |
+
type: text-generation
|
281 |
+
dataset:
|
282 |
+
name: OpenLLM-Ro/ro_mmlu
|
283 |
+
type: OpenLLM-Ro/ro_mmlu
|
284 |
+
metrics:
|
285 |
+
- name: 0-shot
|
286 |
+
type: accuracy
|
287 |
+
value: 50.01
|
288 |
+
- name: 1-shot
|
289 |
+
type: accuracy
|
290 |
+
value: 50.18
|
291 |
+
- name: 3-shot
|
292 |
+
type: accuracy
|
293 |
+
value: 53.13
|
294 |
+
- name: 5-shot
|
295 |
+
type: accuracy
|
296 |
+
value: 53.12
|
297 |
+
- task:
|
298 |
+
type: text-generation
|
299 |
+
dataset:
|
300 |
+
name: OpenLLM-Ro/ro_winogrande
|
301 |
+
type: OpenLLM-Ro/ro_winogrande
|
302 |
+
metrics:
|
303 |
+
- name: 0-shot
|
304 |
+
type: accuracy
|
305 |
+
value: 64.96
|
306 |
+
- name: 1-shot
|
307 |
+
type: accuracy
|
308 |
+
value: 67.09
|
309 |
+
- name: 3-shot
|
310 |
+
type: accuracy
|
311 |
+
value: 67.01
|
312 |
+
- name: 5-shot
|
313 |
+
type: accuracy
|
314 |
+
value: 66.85
|
315 |
+
- task:
|
316 |
+
type: text-generation
|
317 |
+
dataset:
|
318 |
+
name: OpenLLM-Ro/ro_hellaswag
|
319 |
+
type: OpenLLM-Ro/ro_hellaswag
|
320 |
+
metrics:
|
321 |
+
- name: 0-shot
|
322 |
+
type: accuracy
|
323 |
+
value: 59.99
|
324 |
+
- name: 1-shot
|
325 |
+
type: accuracy
|
326 |
+
value: 59.48
|
327 |
+
- name: 3-shot
|
328 |
+
type: accuracy
|
329 |
+
value: 60.14
|
330 |
+
- name: 5-shot
|
331 |
+
type: accuracy
|
332 |
+
value: 60.61
|
333 |
+
- name: 10-shot
|
334 |
+
type: accuracy
|
335 |
+
value: 61.12
|
336 |
+
- task:
|
337 |
+
type: text-generation
|
338 |
+
dataset:
|
339 |
+
name: OpenLLM-Ro/ro_gsm8k
|
340 |
+
type: OpenLLM-Ro/ro_gsm8k
|
341 |
+
metrics:
|
342 |
+
- name: 0-shot
|
343 |
+
type: accuracy
|
344 |
+
value: 21.68
|
345 |
+
- name: 1-shot
|
346 |
+
type: accuracy
|
347 |
+
value: 38.21
|
348 |
+
- name: 3-shot
|
349 |
+
type: accuracy
|
350 |
+
value: 42.68
|
351 |
+
- task:
|
352 |
+
type: text-generation
|
353 |
+
dataset:
|
354 |
+
name: LaRoSeDa_binary
|
355 |
+
type: LaRoSeDa_binary
|
356 |
+
metrics:
|
357 |
+
- name: 0-shot
|
358 |
+
type: macro-f1
|
359 |
+
value: 97.27
|
360 |
+
- name: 1-shot
|
361 |
+
type: macro-f1
|
362 |
+
value: 96.37
|
363 |
+
- name: 3-shot
|
364 |
+
type: macro-f1
|
365 |
+
value: 97.97
|
366 |
+
- name: 5-shot
|
367 |
+
type: macro-f1
|
368 |
+
value: 97.83
|
369 |
+
- task:
|
370 |
+
type: text-generation
|
371 |
+
dataset:
|
372 |
+
name: LaRoSeDa_multiclass
|
373 |
+
type: LaRoSeDa_multiclass
|
374 |
+
metrics:
|
375 |
+
- name: 0-shot
|
376 |
+
type: macro-f1
|
377 |
+
value: 63.95
|
378 |
+
- name: 1-shot
|
379 |
+
type: macro-f1
|
380 |
+
value: 66.89
|
381 |
+
- name: 3-shot
|
382 |
+
type: macro-f1
|
383 |
+
value: 68.16
|
384 |
+
- name: 5-shot
|
385 |
+
type: macro-f1
|
386 |
+
value: 71.19
|
387 |
+
- task:
|
388 |
+
type: text-generation
|
389 |
+
dataset:
|
390 |
+
name: WMT_EN-RO
|
391 |
+
type: WMT_EN-RO
|
392 |
+
metrics:
|
393 |
+
- name: 0-shot
|
394 |
+
type: bleu
|
395 |
+
value: 24.87
|
396 |
+
- name: 1-shot
|
397 |
+
type: bleu
|
398 |
+
value: 28.30
|
399 |
+
- name: 3-shot
|
400 |
+
type: bleu
|
401 |
+
value: 29.26
|
402 |
+
- name: 5-shot
|
403 |
+
type: bleu
|
404 |
+
value: 29.27
|
405 |
+
- task:
|
406 |
+
type: text-generation
|
407 |
+
dataset:
|
408 |
+
name: WMT_RO-EN
|
409 |
+
type: WMT_RO-EN
|
410 |
+
metrics:
|
411 |
+
- name: 0-shot
|
412 |
+
type: bleu
|
413 |
+
value: 3.69
|
414 |
+
- name: 1-shot
|
415 |
+
type: bleu
|
416 |
+
value: 5.45
|
417 |
+
- name: 3-shot
|
418 |
+
type: bleu
|
419 |
+
value: 19.92
|
420 |
+
- name: 5-shot
|
421 |
+
type: bleu
|
422 |
+
value: 23.80
|
423 |
+
- task:
|
424 |
+
type: text-generation
|
425 |
+
dataset:
|
426 |
+
name: XQuAD_EM
|
427 |
+
type: XQuAD_EM
|
428 |
+
metrics:
|
429 |
+
- name: 0-shot
|
430 |
+
type: exact_match
|
431 |
+
value: 23.36
|
432 |
+
- name: 1-shot
|
433 |
+
type: exact_match
|
434 |
+
value: 47.98
|
435 |
+
- name: 3-shot
|
436 |
+
type: exact_match
|
437 |
+
value: 51.85
|
438 |
+
- name: 5-shot
|
439 |
+
type: exact_match
|
440 |
+
value: 51.43
|
441 |
+
- task:
|
442 |
+
type: text-generation
|
443 |
+
dataset:
|
444 |
+
name: XQuAD_F1
|
445 |
+
type: XQuAD_F1
|
446 |
+
metrics:
|
447 |
+
- name: 0-shot
|
448 |
+
type: f1
|
449 |
+
value: 46.29
|
450 |
+
- name: 1-shot
|
451 |
+
type: f1
|
452 |
+
value: 67.40
|
453 |
+
- name: 3-shot
|
454 |
+
type: f1
|
455 |
+
value: 70.58
|
456 |
+
- name: 5-shot
|
457 |
+
type: f1
|
458 |
+
value: 70.53
|
459 |
+
- task:
|
460 |
+
type: text-generation
|
461 |
+
dataset:
|
462 |
+
name: STS
|
463 |
+
type: STS
|
464 |
+
metrics:
|
465 |
+
- name: 0-shot
|
466 |
+
type: spearman
|
467 |
+
value: 77.91
|
468 |
+
- name: 1-shot
|
469 |
+
type: spearman
|
470 |
+
value: 77.73
|
471 |
+
- name: 3-shot
|
472 |
+
type: spearman
|
473 |
+
value: 76.65
|
474 |
+
- task:
|
475 |
+
type: text-generation
|
476 |
+
dataset:
|
477 |
+
name: STS
|
478 |
+
type: STS
|
479 |
+
metrics:
|
480 |
+
- name: 0-shot
|
481 |
+
type: pearson
|
482 |
+
value: 78.03
|
483 |
+
- name: 1-shot
|
484 |
+
type: pearson
|
485 |
+
value: 78.74
|
486 |
+
- name: 3-shot
|
487 |
+
type: pearson
|
488 |
+
value: 78.53
|
489 |
+
|
490 |
---
|
491 |
|
492 |
# Model Card for Model ID
|
|
|
510 |
- **Language(s):** Romanian
|
511 |
- **License:** cc-by-nc-4.0
|
512 |
- **Finetuned from model:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
513 |
+
- **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel)
|
514 |
|
515 |
<!-- - **Finetuned from model [optional]:** [More Information Needed] -->
|
516 |
|
|
|
518 |
|
519 |
<!-- Provide the basic links for the model. -->
|
520 |
|
521 |
+
- **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
|
522 |
- **Paper:** https://arxiv.org/abs/2406.18266
|
523 |
|
524 |
## Intended Use
|
|
|
556 |
print(tokenizer.decode(outputs[0]))
|
557 |
```
|
558 |
|
559 |
+
## Academic Benchmarks
|
560 |
+
|
561 |
+
<table>
|
562 |
+
<tbody>
|
563 |
+
<tr>
|
564 |
+
<td><strong>Model</strong></td>
|
565 |
+
<td><strong><center>Average</center></strong></td>
|
566 |
+
<td><strong><center>ARC</center></strong></td>
|
567 |
+
<td><strong><center>MMLU</center></strong></td>
|
568 |
+
<td><strong><center>Winogrande</center></strong></td>
|
569 |
+
<td><strong><center>Hellaswag</center></strong></td>
|
570 |
+
<td><strong><center>GSM8k</center></strong></td>
|
571 |
+
<td><strong><center>TruthfulQA</center></strong></td>
|
572 |
+
</tr>
|
573 |
+
<tr>
|
574 |
+
<td>Mistral-7B-Instruct-v0.2</td><td><center>47.40</center></td><td><center>46.29</center></td><td><center>47.01</center></td><td><center>58.78</center></td><td><center>54.27</center></td><td><center>13.47</center></td><td><center><strong>64.59</strong></center></td>
|
575 |
+
</tr>
|
576 |
+
<tr>
|
577 |
+
<td><em>RoMistral-7b-Instruct</em></td><td><center><em><strong>52.54</strong></em></center></td><td><center><em><strong>50.42</strong></em></center></td><td><center><em><strong>51.61</strong></em></center></td><td><center><em><strong>66.48</strong></em></center></td><td><center><em><strong>60.27</strong></em></center></td><td><center><em><strong>34.19</strong></em></center></td><td><center><em>52.30</em></center></td>
|
578 |
+
</tr>
|
579 |
+
</tbody>
|
580 |
+
</table>
|
581 |
+
|
582 |
+
## Downstream tasks
|
583 |
+
|
584 |
+
<table>
|
585 |
+
<tbody>
|
586 |
+
<tr>
|
587 |
+
<td></td>
|
588 |
+
<td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
|
589 |
+
<td colspan="4"><center><strong>WMT</strong></center></td>
|
590 |
+
</tr>
|
591 |
+
<tr>
|
592 |
+
<td></td>
|
593 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
594 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
595 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
596 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
597 |
+
</tr>
|
598 |
+
<tr>
|
599 |
+
<td><strong>Model</strong></td>
|
600 |
+
<td><center><strong>Binary<br>(Macro F1)</strong></center></td>
|
601 |
+
<td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
|
602 |
+
<td><center><strong>Binary<br>(Macro F1)</strong></center></td>
|
603 |
+
<td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
|
604 |
+
<td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
|
605 |
+
<td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
|
606 |
+
<td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
|
607 |
+
<td><center><strong>RO-EN<br>(Bleu)</strong></center>
|
608 |
+
</tr>
|
609 |
+
<tr>
|
610 |
+
<td>Mistral-7B-Instruct-v0.2</td><td><center>96.97</center></td><td><center>56.66</center></td><td><center><strong>98.83</strong></center></td><td><center>87.32</center></td><td><center>18.60</center></td><td><center><strong>33.99</strong></center></td><td><center>26.19</center></td><td><center>39.88</center></td>
|
611 |
+
</tr>
|
612 |
+
<tr>
|
613 |
+
<td><em>RoMistral-7b-Instruct</em></td><td><center><em><strong>97.36</strong></em></center></td><td><center><em><strong>67.55</strong></em></center></td><td><center><em>98.80</em></center></td><td><center><em><strong>88.28</strong></em></center></td><td><center><em><strong>27.93</strong></em></center></td><td><center><em>13.21</em></center></td><td><center><em><strong>28.72</strong></em></center></td><td><center><em><strong>40.86</strong></em></center></td>
|
614 |
+
</tr>
|
615 |
+
</tbody>
|
616 |
+
</table>
|
617 |
+
|
618 |
+
<table>
|
619 |
+
<tbody>
|
620 |
+
<tr>
|
621 |
+
<td></td>
|
622 |
+
<td colspan="4"><center><strong>XQuAD</strong></center></td>
|
623 |
+
<td colspan="4"><center><strong>STS</strong></center></td>
|
624 |
+
</tr>
|
625 |
+
<tr>
|
626 |
+
<td></td>
|
627 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
628 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
629 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
630 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
631 |
+
</tr>
|
632 |
+
<tr>
|
633 |
+
<td><strong>Model</strong></td>
|
634 |
+
<td><center><strong>(EM)</strong></center></td>
|
635 |
+
<td><center><strong>(F1)</strong></center></td>
|
636 |
+
<td><center><strong>(EM)</strong></center></td>
|
637 |
+
<td><center><strong>(F1)</strong></center></td>
|
638 |
+
<td><center><strong>(Spearman)</strong></center></td>
|
639 |
+
<td><center><strong>(Pearson)</strong></center></td>
|
640 |
+
<td><center><strong>(Spearman)</strong></center></td>
|
641 |
+
<td><center><strong>(Pearson)</strong></center></td>
|
642 |
+
</tr>
|
643 |
+
<tr>
|
644 |
+
<td>Mistral-7B-Instruct-v0.2</td><td><center>27.92</center></td><td><center>50.71</center></td><td><center><strong>65.46</strong></center></td><td><center><strong>79.73</strong></center></td><td><center>62.62</center></td><td><center>60.86</center></td><td><center>84.92</center></td><td><center>85.44</center></td>
|
645 |
+
</tr>
|
646 |
+
<tr>
|
647 |
+
<td><em>RoMistral-7b-Instruct</em></td><td><center><em><strong>43.66</strong></em></center></td><td><center><em><strong>63.70</strong></em></center></td><td><center><em>55.04</em></center></td><td><center><em>72.31</em></center></td><td><center><em><strong>77.43</strong></em></center></td><td><center><em><strong>78.43</strong></em></center></td><td><center><em><strong>87.25</strong></em></center></td><td><center><em><strong>87.79</strong></em></center></td>
|
648 |
+
</tr>
|
649 |
+
</tbody>
|
650 |
+
</table>
|
651 |
|
|
|
|
|
|
|
|
|
|
|
652 |
|
653 |
## MT-Bench
|
654 |
|
655 |
+
<table>
|
656 |
+
<tbody>
|
657 |
+
<tr>
|
658 |
+
<td><strong>Model</strong></td>
|
659 |
+
<td><strong><center>Average</center></strong></td>
|
660 |
+
<td><strong><center>1st turn</center></strong></td>
|
661 |
+
<td><strong><center>2nd turn</center></strong></td>
|
662 |
+
<td><strong><center>Answers in Ro</center></strong></td>
|
663 |
+
</tr>
|
664 |
+
<tr>
|
665 |
+
<td><em>Mistral-7B-Instruct-v0.2</em></td><td><center><em><strong>5.03</strong></em></center></td><td><center><em>5.05</em></center></td><td><center><em><strong>5.00</strong></em></center></td><td><center><em>154/160</em></center></td>
|
666 |
+
</tr>
|
667 |
+
<tr>
|
668 |
+
<td><em>RoMistral-7b-Instruct</em></td><td><center><em>4.99</em></center></td><td><center><em><strong>5.46</strong></em></center></td><td><center><em>4.53</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
|
669 |
+
</tr>
|
670 |
+
</tbody>
|
671 |
+
</table>
|
672 |
|
|
|
673 |
|
|
|
|
|
|
|
|
|
674 |
|
675 |
+
## RoCulturaBench
|
676 |
|
677 |
+
<table>
|
678 |
+
<tbody>
|
679 |
+
<tr>
|
680 |
+
<td><strong>Model</strong></td>
|
681 |
+
<td><strong><center>Average</center></strong></td>
|
682 |
+
<td><strong><center>Answers in Ro</center></strong></td>
|
683 |
+
</tr>
|
684 |
+
<tr>
|
685 |
+
<td><em>Mistral-7B-Instruct-v0.2</em></td><td><center><em><strong>3.68</strong></em></center></td><td><center><em>97/100</em></center></td>
|
686 |
+
</tr>
|
687 |
+
<tr>
|
688 |
+
<td><em>RoMistral-7b-Instruct</em></td><td><center><em>3.38</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
|
689 |
+
</tr>
|
690 |
+
</tbody>
|
691 |
+
</table>
|
692 |
|
693 |
|
694 |
|