mihaimasala commited on
Commit
8d19450
·
verified ·
1 Parent(s): c8e9213

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +610 -17
README.md CHANGED
@@ -4,6 +4,489 @@ language:
4
  - ro
5
  base_model:
6
  - mistralai/Mistral-7B-v0.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  ---
8
 
9
  # Model Card for Model ID
@@ -27,6 +510,7 @@ OpenLLM-Ro represents the first open-source effort to build a LLM specialized fo
27
  - **Language(s):** Romanian
28
  - **License:** cc-by-nc-4.0
29
  - **Finetuned from model:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
 
30
 
31
  <!-- - **Finetuned from model [optional]:** [More Information Needed] -->
32
 
@@ -34,7 +518,7 @@ OpenLLM-Ro represents the first open-source effort to build a LLM specialized fo
34
 
35
  <!-- Provide the basic links for the model. -->
36
 
37
- - **Repository:** https://github.com/OpenLLM-Ro/llama-recipes
38
  - **Paper:** https://arxiv.org/abs/2406.18266
39
 
40
  ## Intended Use
@@ -72,30 +556,139 @@ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
72
  print(tokenizer.decode(outputs[0]))
73
  ```
74
 
75
- ## Benchmarks
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
 
77
- | Model | Average | ARC | MMLU |Winogrande|HellaSwag | GSM8k |TruthfulQA|
78
- |--------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
79
- | Mistral-7B-Instruct-v0.2| 47.41 | 46.25 | 47.04 | 58.72 | 54.25 | 13.59 | *64.63* |
80
- | *RoMistral-7b-Instruct* | ***52.49*** | ***50.39*** | ***51.64*** | ***66.69*** | ***60.24*** | ***33.71*** | 52.59 |
81
-
82
 
83
  ## MT-Bench
84
 
85
- | Model | Average | 1st turn | 2nd turn | Answers in Ro |
86
- |--------------------|:--------:|:--------:|:--------:| :--------:|
87
- | Mistral-7B-Instruct-v0.2 | 4.83 | 5.09 | **4.58** | 154 / 160|
88
- | *RoMistral-7b-Instruct*| ***4.91***|***5.67***| *4.16* | ***160 / 160***|
89
-
 
 
 
 
 
 
 
 
 
 
 
 
90
 
91
- ## RoCulturaBench
92
 
93
- | Model | Score | Answers in Ro|
94
- |--------------------|:--------:|:--------:|
95
- | Mistral-7B-Instruct-v0.2 | **3.75** | 99 / 100 |
96
- |*RoMistral-7b-Instruct*| *3.17*| ***100 / 100*** |
97
 
 
98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
 
100
 
101
 
 
4
  - ro
5
  base_model:
6
  - mistralai/Mistral-7B-v0.1
7
+ datasets:
8
+ - OpenLLM-Ro/ro_sft_alpaca
9
+ - OpenLLM-Ro/ro_sft_alpaca_gpt4
10
+ - OpenLLM-Ro/ro_sft_dolly
11
+ - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
12
+ - OpenLLM-Ro/ro_sft_norobots
13
+ - OpenLLM-Ro/ro_sft_orca
14
+ - OpenLLM-Ro/ro_sft_camel
15
+ model-index:
16
+ - name: OpenLLM-Ro/RoMistral-7b-Instruct
17
+ results:
18
+ - task:
19
+ type: text-generation
20
+ dataset:
21
+ name: RoMT-Bench
22
+ type: RoMT-Bench
23
+ metrics:
24
+ - name: Score
25
+ type: Score
26
+ value: 4.99
27
+ - task:
28
+ type: text-generation
29
+ dataset:
30
+ name: RoCulturaBench
31
+ type: RoCulturaBench
32
+ metrics:
33
+ - name: Score
34
+ type: Score
35
+ value: 3.38
36
+ - task:
37
+ type: text-generation
38
+ dataset:
39
+ name: Romanian_Academic_Benchmarks
40
+ type: Romanian_Academic_Benchmarks
41
+ metrics:
42
+ - name: Average accuracy
43
+ type: accuracy
44
+ value: 52.54
45
+ - task:
46
+ type: text-generation
47
+ dataset:
48
+ name: OpenLLM-Ro/ro_arc_challenge
49
+ type: OpenLLM-Ro/ro_arc_challenge
50
+ metrics:
51
+ - name: Average accuracy
52
+ type: accuracy
53
+ value: 50.41
54
+ - task:
55
+ type: text-generation
56
+ dataset:
57
+ name: OpenLLM-Ro/ro_mmlu
58
+ type: OpenLLM-Ro/ro_mmlu
59
+ metrics:
60
+ - name: Average accuracy
61
+ type: accuracy
62
+ value: 51.61
63
+ - task:
64
+ type: text-generation
65
+ dataset:
66
+ name: OpenLLM-Ro/ro_winogrande
67
+ type: OpenLLM-Ro/ro_winogrande
68
+ metrics:
69
+ - name: Average accuracy
70
+ type: accuracy
71
+ value: 66.48
72
+ - task:
73
+ type: text-generation
74
+ dataset:
75
+ name: OpenLLM-Ro/ro_hellaswag
76
+ type: OpenLLM-Ro/ro_hellaswag
77
+ metrics:
78
+ - name: Average accuracy
79
+ type: accuracy
80
+ value: 60.27
81
+ - task:
82
+ type: text-generation
83
+ dataset:
84
+ name: OpenLLM-Ro/ro_gsm8k
85
+ type: OpenLLM-Ro/ro_gsm8k
86
+ metrics:
87
+ - name: Average accuracy
88
+ type: accuracy
89
+ value: 34.19
90
+ - task:
91
+ type: text-generation
92
+ dataset:
93
+ name: OpenLLM-Ro/ro_truthfulqa
94
+ type: OpenLLM-Ro/ro_truthfulqa
95
+ metrics:
96
+ - name: Average accuracy
97
+ type: accuracy
98
+ value: 52.30
99
+ - task:
100
+ type: text-generation
101
+ dataset:
102
+ name: LaRoSeDa_binary
103
+ type: LaRoSeDa_binary
104
+ metrics:
105
+ - name: Average macro-f1
106
+ type: macro-f1
107
+ value: 97.36
108
+ - task:
109
+ type: text-generation
110
+ dataset:
111
+ name: LaRoSeDa_multiclass
112
+ type: LaRoSeDa_multiclass
113
+ metrics:
114
+ - name: Average macro-f1
115
+ type: macro-f1
116
+ value: 67.55
117
+ - task:
118
+ type: text-generation
119
+ dataset:
120
+ name: LaRoSeDa_binary_finetuned
121
+ type: LaRoSeDa_binary_finetuned
122
+ metrics:
123
+ - name: Average macro-f1
124
+ type: macro-f1
125
+ value: 98.80
126
+ - task:
127
+ type: text-generation
128
+ dataset:
129
+ name: LaRoSeDa_multiclass_finetuned
130
+ type: LaRoSeDa_multiclass_finetuned
131
+ metrics:
132
+ - name: Average macro-f1
133
+ type: macro-f1
134
+ value: 88.28
135
+ - task:
136
+ type: text-generation
137
+ dataset:
138
+ name: WMT_EN-RO
139
+ type: WMT_EN-RO
140
+ metrics:
141
+ - name: Average bleu
142
+ type: bleu
143
+ value: 27.93
144
+ - task:
145
+ type: text-generation
146
+ dataset:
147
+ name: WMT_RO-EN
148
+ type: WMT_RO-EN
149
+ metrics:
150
+ - name: Average bleu
151
+ type: bleu
152
+ value: 13.21
153
+ - task:
154
+ type: text-generation
155
+ dataset:
156
+ name: WMT_EN-RO_finetuned
157
+ type: WMT_EN-RO_finetuned
158
+ metrics:
159
+ - name: Average bleu
160
+ type: bleu
161
+ value: 28.72
162
+ - task:
163
+ type: text-generation
164
+ dataset:
165
+ name: WMT_RO-EN_finetuned
166
+ type: WMT_RO-EN_finetuned
167
+ metrics:
168
+ - name: Average bleu
169
+ type: bleu
170
+ value: 40.86
171
+ - task:
172
+ type: text-generation
173
+ dataset:
174
+ name: XQuAD
175
+ type: XQuAD
176
+ metrics:
177
+ - name: Average exact_match
178
+ type: exact_match
179
+ value: 43.66
180
+ - task:
181
+ type: text-generation
182
+ dataset:
183
+ name: XQuAD
184
+ type: XQuAD
185
+ metrics:
186
+ - name: Average f1
187
+ type: f1
188
+ value: 63.70
189
+ - task:
190
+ type: text-generation
191
+ dataset:
192
+ name: XQuAD_finetuned
193
+ type: XQuAD_finetuned
194
+ metrics:
195
+ - name: Average exact_match
196
+ type: exact_match
197
+ value: 55.04
198
+ - task:
199
+ type: text-generation
200
+ dataset:
201
+ name: XQuAD_finetuned
202
+ type: XQuAD_finetuned
203
+ metrics:
204
+ - name: Average f1
205
+ type: f1
206
+ value: 72.31
207
+ - task:
208
+ type: text-generation
209
+ dataset:
210
+ name: STS
211
+ type: STS
212
+ metrics:
213
+ - name: Average spearman
214
+ type: spearman
215
+ value: 77.43
216
+ - task:
217
+ type: text-generation
218
+ dataset:
219
+ name: STS
220
+ type: STS
221
+ metrics:
222
+ - name: Average pearson
223
+ type: pearson
224
+ value: 78.43
225
+ - task:
226
+ type: text-generation
227
+ dataset:
228
+ name: STS_finetuned
229
+ type: STS_finetuned
230
+ metrics:
231
+ - name: Average spearman
232
+ type: spearman
233
+ value: 87.25
234
+ - task:
235
+ type: text-generation
236
+ dataset:
237
+ name: STS_finetuned
238
+ type: STS_finetuned
239
+ metrics:
240
+ - name: Average pearson
241
+ type: pearson
242
+ value: 87.79
243
+ - task:
244
+ type: text-generation
245
+ dataset:
246
+ name: RoMT-Bench
247
+ type: RoMT-Bench
248
+ metrics:
249
+ - name: First turn
250
+ type: Score
251
+ value: 5.46
252
+ - name: Second turn
253
+ type: Score
254
+ value: 4.53
255
+ - task:
256
+ type: text-generation
257
+ dataset:
258
+ name: OpenLLM-Ro/ro_arc_challenge
259
+ type: OpenLLM-Ro/ro_arc_challenge
260
+ metrics:
261
+ - name: 0-shot
262
+ type: accuracy
263
+ value: 47.47
264
+ - name: 1-shot
265
+ type: accuracy
266
+ value: 48.59
267
+ - name: 3-shot
268
+ type: accuracy
269
+ value: 50.30
270
+ - name: 5-shot
271
+ type: accuracy
272
+ value: 51.33
273
+ - name: 10-shot
274
+ type: accuracy
275
+ value: 52.36
276
+ - name: 25-shot
277
+ type: accuracy
278
+ value: 52.44
279
+ - task:
280
+ type: text-generation
281
+ dataset:
282
+ name: OpenLLM-Ro/ro_mmlu
283
+ type: OpenLLM-Ro/ro_mmlu
284
+ metrics:
285
+ - name: 0-shot
286
+ type: accuracy
287
+ value: 50.01
288
+ - name: 1-shot
289
+ type: accuracy
290
+ value: 50.18
291
+ - name: 3-shot
292
+ type: accuracy
293
+ value: 53.13
294
+ - name: 5-shot
295
+ type: accuracy
296
+ value: 53.12
297
+ - task:
298
+ type: text-generation
299
+ dataset:
300
+ name: OpenLLM-Ro/ro_winogrande
301
+ type: OpenLLM-Ro/ro_winogrande
302
+ metrics:
303
+ - name: 0-shot
304
+ type: accuracy
305
+ value: 64.96
306
+ - name: 1-shot
307
+ type: accuracy
308
+ value: 67.09
309
+ - name: 3-shot
310
+ type: accuracy
311
+ value: 67.01
312
+ - name: 5-shot
313
+ type: accuracy
314
+ value: 66.85
315
+ - task:
316
+ type: text-generation
317
+ dataset:
318
+ name: OpenLLM-Ro/ro_hellaswag
319
+ type: OpenLLM-Ro/ro_hellaswag
320
+ metrics:
321
+ - name: 0-shot
322
+ type: accuracy
323
+ value: 59.99
324
+ - name: 1-shot
325
+ type: accuracy
326
+ value: 59.48
327
+ - name: 3-shot
328
+ type: accuracy
329
+ value: 60.14
330
+ - name: 5-shot
331
+ type: accuracy
332
+ value: 60.61
333
+ - name: 10-shot
334
+ type: accuracy
335
+ value: 61.12
336
+ - task:
337
+ type: text-generation
338
+ dataset:
339
+ name: OpenLLM-Ro/ro_gsm8k
340
+ type: OpenLLM-Ro/ro_gsm8k
341
+ metrics:
342
+ - name: 0-shot
343
+ type: accuracy
344
+ value: 21.68
345
+ - name: 1-shot
346
+ type: accuracy
347
+ value: 38.21
348
+ - name: 3-shot
349
+ type: accuracy
350
+ value: 42.68
351
+ - task:
352
+ type: text-generation
353
+ dataset:
354
+ name: LaRoSeDa_binary
355
+ type: LaRoSeDa_binary
356
+ metrics:
357
+ - name: 0-shot
358
+ type: macro-f1
359
+ value: 97.27
360
+ - name: 1-shot
361
+ type: macro-f1
362
+ value: 96.37
363
+ - name: 3-shot
364
+ type: macro-f1
365
+ value: 97.97
366
+ - name: 5-shot
367
+ type: macro-f1
368
+ value: 97.83
369
+ - task:
370
+ type: text-generation
371
+ dataset:
372
+ name: LaRoSeDa_multiclass
373
+ type: LaRoSeDa_multiclass
374
+ metrics:
375
+ - name: 0-shot
376
+ type: macro-f1
377
+ value: 63.95
378
+ - name: 1-shot
379
+ type: macro-f1
380
+ value: 66.89
381
+ - name: 3-shot
382
+ type: macro-f1
383
+ value: 68.16
384
+ - name: 5-shot
385
+ type: macro-f1
386
+ value: 71.19
387
+ - task:
388
+ type: text-generation
389
+ dataset:
390
+ name: WMT_EN-RO
391
+ type: WMT_EN-RO
392
+ metrics:
393
+ - name: 0-shot
394
+ type: bleu
395
+ value: 24.87
396
+ - name: 1-shot
397
+ type: bleu
398
+ value: 28.30
399
+ - name: 3-shot
400
+ type: bleu
401
+ value: 29.26
402
+ - name: 5-shot
403
+ type: bleu
404
+ value: 29.27
405
+ - task:
406
+ type: text-generation
407
+ dataset:
408
+ name: WMT_RO-EN
409
+ type: WMT_RO-EN
410
+ metrics:
411
+ - name: 0-shot
412
+ type: bleu
413
+ value: 3.69
414
+ - name: 1-shot
415
+ type: bleu
416
+ value: 5.45
417
+ - name: 3-shot
418
+ type: bleu
419
+ value: 19.92
420
+ - name: 5-shot
421
+ type: bleu
422
+ value: 23.80
423
+ - task:
424
+ type: text-generation
425
+ dataset:
426
+ name: XQuAD_EM
427
+ type: XQuAD_EM
428
+ metrics:
429
+ - name: 0-shot
430
+ type: exact_match
431
+ value: 23.36
432
+ - name: 1-shot
433
+ type: exact_match
434
+ value: 47.98
435
+ - name: 3-shot
436
+ type: exact_match
437
+ value: 51.85
438
+ - name: 5-shot
439
+ type: exact_match
440
+ value: 51.43
441
+ - task:
442
+ type: text-generation
443
+ dataset:
444
+ name: XQuAD_F1
445
+ type: XQuAD_F1
446
+ metrics:
447
+ - name: 0-shot
448
+ type: f1
449
+ value: 46.29
450
+ - name: 1-shot
451
+ type: f1
452
+ value: 67.40
453
+ - name: 3-shot
454
+ type: f1
455
+ value: 70.58
456
+ - name: 5-shot
457
+ type: f1
458
+ value: 70.53
459
+ - task:
460
+ type: text-generation
461
+ dataset:
462
+ name: STS
463
+ type: STS
464
+ metrics:
465
+ - name: 0-shot
466
+ type: spearman
467
+ value: 77.91
468
+ - name: 1-shot
469
+ type: spearman
470
+ value: 77.73
471
+ - name: 3-shot
472
+ type: spearman
473
+ value: 76.65
474
+ - task:
475
+ type: text-generation
476
+ dataset:
477
+ name: STS
478
+ type: STS
479
+ metrics:
480
+ - name: 0-shot
481
+ type: pearson
482
+ value: 78.03
483
+ - name: 1-shot
484
+ type: pearson
485
+ value: 78.74
486
+ - name: 3-shot
487
+ type: pearson
488
+ value: 78.53
489
+
490
  ---
491
 
492
  # Model Card for Model ID
 
510
  - **Language(s):** Romanian
511
  - **License:** cc-by-nc-4.0
512
  - **Finetuned from model:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
513
+ - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel)
514
 
515
  <!-- - **Finetuned from model [optional]:** [More Information Needed] -->
516
 
 
518
 
519
  <!-- Provide the basic links for the model. -->
520
 
521
+ - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
522
  - **Paper:** https://arxiv.org/abs/2406.18266
523
 
524
  ## Intended Use
 
556
  print(tokenizer.decode(outputs[0]))
557
  ```
558
 
559
+ ## Academic Benchmarks
560
+
561
+ <table>
562
+ <tbody>
563
+ <tr>
564
+ <td><strong>Model</strong></td>
565
+ <td><strong><center>Average</center></strong></td>
566
+ <td><strong><center>ARC</center></strong></td>
567
+ <td><strong><center>MMLU</center></strong></td>
568
+ <td><strong><center>Winogrande</center></strong></td>
569
+ <td><strong><center>Hellaswag</center></strong></td>
570
+ <td><strong><center>GSM8k</center></strong></td>
571
+ <td><strong><center>TruthfulQA</center></strong></td>
572
+ </tr>
573
+ <tr>
574
+ <td>Mistral-7B-Instruct-v0.2</td><td><center>47.40</center></td><td><center>46.29</center></td><td><center>47.01</center></td><td><center>58.78</center></td><td><center>54.27</center></td><td><center>13.47</center></td><td><center><strong>64.59</strong></center></td>
575
+ </tr>
576
+ <tr>
577
+ <td><em>RoMistral-7b-Instruct</em></td><td><center><em><strong>52.54</strong></em></center></td><td><center><em><strong>50.42</strong></em></center></td><td><center><em><strong>51.61</strong></em></center></td><td><center><em><strong>66.48</strong></em></center></td><td><center><em><strong>60.27</strong></em></center></td><td><center><em><strong>34.19</strong></em></center></td><td><center><em>52.30</em></center></td>
578
+ </tr>
579
+ </tbody>
580
+ </table>
581
+
582
+ ## Downstream tasks
583
+
584
+ <table>
585
+ <tbody>
586
+ <tr>
587
+ <td></td>
588
+ <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
589
+ <td colspan="4"><center><strong>WMT</strong></center></td>
590
+ </tr>
591
+ <tr>
592
+ <td></td>
593
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
594
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
595
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
596
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
597
+ </tr>
598
+ <tr>
599
+ <td><strong>Model</strong></td>
600
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
601
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
602
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
603
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
604
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
605
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
606
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
607
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center>
608
+ </tr>
609
+ <tr>
610
+ <td>Mistral-7B-Instruct-v0.2</td><td><center>96.97</center></td><td><center>56.66</center></td><td><center><strong>98.83</strong></center></td><td><center>87.32</center></td><td><center>18.60</center></td><td><center><strong>33.99</strong></center></td><td><center>26.19</center></td><td><center>39.88</center></td>
611
+ </tr>
612
+ <tr>
613
+ <td><em>RoMistral-7b-Instruct</em></td><td><center><em><strong>97.36</strong></em></center></td><td><center><em><strong>67.55</strong></em></center></td><td><center><em>98.80</em></center></td><td><center><em><strong>88.28</strong></em></center></td><td><center><em><strong>27.93</strong></em></center></td><td><center><em>13.21</em></center></td><td><center><em><strong>28.72</strong></em></center></td><td><center><em><strong>40.86</strong></em></center></td>
614
+ </tr>
615
+ </tbody>
616
+ </table>
617
+
618
+ <table>
619
+ <tbody>
620
+ <tr>
621
+ <td></td>
622
+ <td colspan="4"><center><strong>XQuAD</strong></center></td>
623
+ <td colspan="4"><center><strong>STS</strong></center></td>
624
+ </tr>
625
+ <tr>
626
+ <td></td>
627
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
628
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
629
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
630
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
631
+ </tr>
632
+ <tr>
633
+ <td><strong>Model</strong></td>
634
+ <td><center><strong>(EM)</strong></center></td>
635
+ <td><center><strong>(F1)</strong></center></td>
636
+ <td><center><strong>(EM)</strong></center></td>
637
+ <td><center><strong>(F1)</strong></center></td>
638
+ <td><center><strong>(Spearman)</strong></center></td>
639
+ <td><center><strong>(Pearson)</strong></center></td>
640
+ <td><center><strong>(Spearman)</strong></center></td>
641
+ <td><center><strong>(Pearson)</strong></center></td>
642
+ </tr>
643
+ <tr>
644
+ <td>Mistral-7B-Instruct-v0.2</td><td><center>27.92</center></td><td><center>50.71</center></td><td><center><strong>65.46</strong></center></td><td><center><strong>79.73</strong></center></td><td><center>62.62</center></td><td><center>60.86</center></td><td><center>84.92</center></td><td><center>85.44</center></td>
645
+ </tr>
646
+ <tr>
647
+ <td><em>RoMistral-7b-Instruct</em></td><td><center><em><strong>43.66</strong></em></center></td><td><center><em><strong>63.70</strong></em></center></td><td><center><em>55.04</em></center></td><td><center><em>72.31</em></center></td><td><center><em><strong>77.43</strong></em></center></td><td><center><em><strong>78.43</strong></em></center></td><td><center><em><strong>87.25</strong></em></center></td><td><center><em><strong>87.79</strong></em></center></td>
648
+ </tr>
649
+ </tbody>
650
+ </table>
651
 
 
 
 
 
 
652
 
653
  ## MT-Bench
654
 
655
+ <table>
656
+ <tbody>
657
+ <tr>
658
+ <td><strong>Model</strong></td>
659
+ <td><strong><center>Average</center></strong></td>
660
+ <td><strong><center>1st turn</center></strong></td>
661
+ <td><strong><center>2nd turn</center></strong></td>
662
+ <td><strong><center>Answers in Ro</center></strong></td>
663
+ </tr>
664
+ <tr>
665
+ <td><em>Mistral-7B-Instruct-v0.2</em></td><td><center><em><strong>5.03</strong></em></center></td><td><center><em>5.05</em></center></td><td><center><em><strong>5.00</strong></em></center></td><td><center><em>154/160</em></center></td>
666
+ </tr>
667
+ <tr>
668
+ <td><em>RoMistral-7b-Instruct</em></td><td><center><em>4.99</em></center></td><td><center><em><strong>5.46</strong></em></center></td><td><center><em>4.53</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
669
+ </tr>
670
+ </tbody>
671
+ </table>
672
 
 
673
 
 
 
 
 
674
 
675
+ ## RoCulturaBench
676
 
677
+ <table>
678
+ <tbody>
679
+ <tr>
680
+ <td><strong>Model</strong></td>
681
+ <td><strong><center>Average</center></strong></td>
682
+ <td><strong><center>Answers in Ro</center></strong></td>
683
+ </tr>
684
+ <tr>
685
+ <td><em>Mistral-7B-Instruct-v0.2</em></td><td><center><em><strong>3.68</strong></em></center></td><td><center><em>97/100</em></center></td>
686
+ </tr>
687
+ <tr>
688
+ <td><em>RoMistral-7b-Instruct</em></td><td><center><em>3.38</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
689
+ </tr>
690
+ </tbody>
691
+ </table>
692
 
693
 
694