Safetensors
Romanian
gemma2
Eval Results
mihaimasala commited on
Commit
e3d3aa1
1 Parent(s): 9d660b1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +652 -3
README.md CHANGED
@@ -1,3 +1,652 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - ro
5
+ base_model:
6
+ - OpenLLM-Ro/RoGemma2-9b-Instruct-2024-10-09
7
+ datasets:
8
+ - OpenLLM-Ro/ro_dpo_helpsteer
9
+ model-index:
10
+ - name: OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2024-10-09
11
+ results:
12
+ - task:
13
+ type: text-generation
14
+ dataset:
15
+ name: RoMT-Bench
16
+ type: RoMT-Bench
17
+ metrics:
18
+ - name: Score
19
+ type: Score
20
+ value: 6.77
21
+ - task:
22
+ type: text-generation
23
+ dataset:
24
+ name: RoCulturaBench
25
+ type: RoCulturaBench
26
+ metrics:
27
+ - name: Score
28
+ type: Score
29
+ value: 4.83
30
+ - task:
31
+ type: text-generation
32
+ dataset:
33
+ name: Romanian_Academic_Benchmarks
34
+ type: Romanian_Academic_Benchmarks
35
+ metrics:
36
+ - name: Average accuracy
37
+ type: accuracy
38
+ value: 59.08
39
+ - task:
40
+ type: text-generation
41
+ dataset:
42
+ name: OpenLLM-Ro/ro_arc_challenge
43
+ type: OpenLLM-Ro/ro_arc_challenge
44
+ metrics:
45
+ - name: Average accuracy
46
+ type: accuracy
47
+ value: 54.10
48
+ - task:
49
+ type: text-generation
50
+ dataset:
51
+ name: OpenLLM-Ro/ro_mmlu
52
+ type: OpenLLM-Ro/ro_mmlu
53
+ metrics:
54
+ - name: Average accuracy
55
+ type: accuracy
56
+ value: 63.41
57
+ - task:
58
+ type: text-generation
59
+ dataset:
60
+ name: OpenLLM-Ro/ro_winogrande
61
+ type: OpenLLM-Ro/ro_winogrande
62
+ metrics:
63
+ - name: Average accuracy
64
+ type: accuracy
65
+ value: 70.02
66
+ - task:
67
+ type: text-generation
68
+ dataset:
69
+ name: OpenLLM-Ro/ro_hellaswag
70
+ type: OpenLLM-Ro/ro_hellaswag
71
+ metrics:
72
+ - name: Average accuracy
73
+ type: accuracy
74
+ value: 59.35
75
+ - task:
76
+ type: text-generation
77
+ dataset:
78
+ name: OpenLLM-Ro/ro_gsm8k
79
+ type: OpenLLM-Ro/ro_gsm8k
80
+ metrics:
81
+ - name: Average accuracy
82
+ type: accuracy
83
+ value: 57.24
84
+ - task:
85
+ type: text-generation
86
+ dataset:
87
+ name: OpenLLM-Ro/ro_truthfulqa
88
+ type: OpenLLM-Ro/ro_truthfulqa
89
+ metrics:
90
+ - name: Average accuracy
91
+ type: accuracy
92
+ value: 50.39
93
+ - task:
94
+ type: text-generation
95
+ dataset:
96
+ name: LaRoSeDa_binary
97
+ type: LaRoSeDa_binary
98
+ metrics:
99
+ - name: Average macro-f1
100
+ type: macro-f1
101
+ value: 97.74
102
+ - task:
103
+ type: text-generation
104
+ dataset:
105
+ name: LaRoSeDa_multiclass
106
+ type: LaRoSeDa_multiclass
107
+ metrics:
108
+ - name: Average macro-f1
109
+ type: macro-f1
110
+ value: 67.40
111
+ - task:
112
+ type: text-generation
113
+ dataset:
114
+ name: WMT_EN-RO
115
+ type: WMT_EN-RO
116
+ metrics:
117
+ - name: Average bleu
118
+ type: bleu
119
+ value: 27.32
120
+ - task:
121
+ type: text-generation
122
+ dataset:
123
+ name: WMT_RO-EN
124
+ type: WMT_RO-EN
125
+ metrics:
126
+ - name: Average bleu
127
+ type: bleu
128
+ value: 15.96
129
+ - task:
130
+ type: text-generation
131
+ dataset:
132
+ name: XQuAD
133
+ type: XQuAD
134
+ metrics:
135
+ - name: Average exact_match
136
+ type: exact_match
137
+ value: 32.42
138
+ - task:
139
+ type: text-generation
140
+ dataset:
141
+ name: XQuAD
142
+ type: XQuAD
143
+ metrics:
144
+ - name: Average f1
145
+ type: f1
146
+ value: 58.68
147
+ - task:
148
+ type: text-generation
149
+ dataset:
150
+ name: STS
151
+ type: STS
152
+ metrics:
153
+ - name: Average spearman
154
+ type: spearman
155
+ value: 80.82
156
+ - task:
157
+ type: text-generation
158
+ dataset:
159
+ name: STS
160
+ type: STS
161
+ metrics:
162
+ - name: Average pearson
163
+ type: pearson
164
+ value: 81.50
165
+ - task:
166
+ type: text-generation
167
+ dataset:
168
+ name: RoMT-Bench
169
+ type: RoMT-Bench
170
+ metrics:
171
+ - name: First turn
172
+ type: Score
173
+ value: 7.24
174
+ - name: Second turn
175
+ type: Score
176
+ value: 6.30
177
+ - task:
178
+ type: text-generation
179
+ dataset:
180
+ name: OpenLLM-Ro/ro_arc_challenge
181
+ type: OpenLLM-Ro/ro_arc_challenge
182
+ metrics:
183
+ - name: 0-shot
184
+ type: accuracy
185
+ value: 51.59
186
+ - name: 1-shot
187
+ type: accuracy
188
+ value: 50.99
189
+ - name: 3-shot
190
+ type: accuracy
191
+ value: 53.47
192
+ - name: 5-shot
193
+ type: accuracy
194
+ value: 54.84
195
+ - name: 10-shot
196
+ type: accuracy
197
+ value: 58.10
198
+ - name: 25-shot
199
+ type: accuracy
200
+ value: 55.61
201
+ - task:
202
+ type: text-generation
203
+ dataset:
204
+ name: OpenLLM-Ro/ro_mmlu
205
+ type: OpenLLM-Ro/ro_mmlu
206
+ metrics:
207
+ - name: 0-shot
208
+ type: accuracy
209
+ value: 62.15
210
+ - name: 1-shot
211
+ type: accuracy
212
+ value: 62.78
213
+ - name: 3-shot
214
+ type: accuracy
215
+ value: 64.27
216
+ - name: 5-shot
217
+ type: accuracy
218
+ value: 64.43
219
+ - task:
220
+ type: text-generation
221
+ dataset:
222
+ name: OpenLLM-Ro/ro_winogrande
223
+ type: OpenLLM-Ro/ro_winogrande
224
+ metrics:
225
+ - name: 0-shot
226
+ type: accuracy
227
+ value: 66.69
228
+ - name: 1-shot
229
+ type: accuracy
230
+ value: 68.82
231
+ - name: 3-shot
232
+ type: accuracy
233
+ value: 71.82
234
+ - name: 5-shot
235
+ type: accuracy
236
+ value: 72.77
237
+ - task:
238
+ type: text-generation
239
+ dataset:
240
+ name: OpenLLM-Ro/ro_hellaswag
241
+ type: OpenLLM-Ro/ro_hellaswag
242
+ metrics:
243
+ - name: 0-shot
244
+ type: accuracy
245
+ value: 56.98
246
+ - name: 1-shot
247
+ type: accuracy
248
+ value: 57.73
249
+ - name: 3-shot
250
+ type: accuracy
251
+ value: 59.29
252
+ - name: 5-shot
253
+ type: accuracy
254
+ value: 60.70
255
+ - name: 10-shot
256
+ type: accuracy
257
+ value: 62.03
258
+ - task:
259
+ type: text-generation
260
+ dataset:
261
+ name: OpenLLM-Ro/ro_gsm8k
262
+ type: OpenLLM-Ro/ro_gsm8k
263
+ metrics:
264
+ - name: 1-shot
265
+ type: accuracy
266
+ value: 46.78
267
+ - name: 3-shot
268
+ type: accuracy
269
+ value: 59.97
270
+ - name: 5-shot
271
+ type: accuracy
272
+ value: 64.97
273
+ - task:
274
+ type: text-generation
275
+ dataset:
276
+ name: LaRoSeDa_binary
277
+ type: LaRoSeDa_binary
278
+ metrics:
279
+ - name: 0-shot
280
+ type: macro-f1
281
+ value: 97.30
282
+ - name: 1-shot
283
+ type: macro-f1
284
+ value: 97.50
285
+ - name: 3-shot
286
+ type: macro-f1
287
+ value: 97.83
288
+ - name: 5-shot
289
+ type: macro-f1
290
+ value: 98.33
291
+ - task:
292
+ type: text-generation
293
+ dataset:
294
+ name: LaRoSeDa_multiclass
295
+ type: LaRoSeDa_multiclass
296
+ metrics:
297
+ - name: 0-shot
298
+ type: macro-f1
299
+ value: 59.30
300
+ - name: 1-shot
301
+ type: macro-f1
302
+ value: 65.52
303
+ - name: 3-shot
304
+ type: macro-f1
305
+ value: 70.94
306
+ - name: 5-shot
307
+ type: macro-f1
308
+ value: 73.85
309
+ - task:
310
+ type: text-generation
311
+ dataset:
312
+ name: WMT_EN-RO
313
+ type: WMT_EN-RO
314
+ metrics:
315
+ - name: 0-shot
316
+ type: bleu
317
+ value: 17.49
318
+ - name: 1-shot
319
+ type: bleu
320
+ value: 30.33
321
+ - name: 3-shot
322
+ type: bleu
323
+ value: 30.58
324
+ - name: 5-shot
325
+ type: bleu
326
+ value: 30.88
327
+ - task:
328
+ type: text-generation
329
+ dataset:
330
+ name: WMT_RO-EN
331
+ type: WMT_RO-EN
332
+ metrics:
333
+ - name: 0-shot
334
+ type: bleu
335
+ value: 2.17
336
+ - name: 1-shot
337
+ type: bleu
338
+ value: 10.69
339
+ - name: 3-shot
340
+ type: bleu
341
+ value: 21.68
342
+ - name: 5-shot
343
+ type: bleu
344
+ value: 29.28
345
+ - task:
346
+ type: text-generation
347
+ dataset:
348
+ name: XQuAD_EM
349
+ type: XQuAD_EM
350
+ metrics:
351
+ - name: 0-shot
352
+ type: exact_match
353
+ value: 23.28
354
+ - name: 1-shot
355
+ type: exact_match
356
+ value: 33.45
357
+ - name: 3-shot
358
+ type: exact_match
359
+ value: 34.37
360
+ - name: 5-shot
361
+ type: exact_match
362
+ value: 38.57
363
+ - task:
364
+ type: text-generation
365
+ dataset:
366
+ name: XQuAD_F1
367
+ type: XQuAD_F1
368
+ metrics:
369
+ - name: 0-shot
370
+ type: f1
371
+ value: 47.16
372
+ - name: 1-shot
373
+ type: f1
374
+ value: 60.28
375
+ - name: 3-shot
376
+ type: f1
377
+ value: 62.09
378
+ - name: 5-shot
379
+ type: f1
380
+ value: 65.20
381
+ - task:
382
+ type: text-generation
383
+ dataset:
384
+ name: STS_Spearman
385
+ type: STS_Spearman
386
+ metrics:
387
+ - name: 1-shot
388
+ type: spearman
389
+ value: 75.34
390
+ - name: 3-shot
391
+ type: spearman
392
+ value: 82.71
393
+ - name: 5-shot
394
+ type: spearman
395
+ value: 84.41
396
+ - task:
397
+ type: text-generation
398
+ dataset:
399
+ name: STS_Pearson
400
+ type: STS_Pearson
401
+ metrics:
402
+ - name: 1-shot
403
+ type: pearson
404
+ value: 77.97
405
+ - name: 3-shot
406
+ type: pearson
407
+ value: 82.49
408
+ - name: 5-shot
409
+ type: pearson
410
+ value: 84.05
411
+
412
+ ---
413
+
414
+ # Model Card for Model ID
415
+
416
+ <!-- Provide a quick summary of what the model is/does. -->
417
+
418
+ RoGemma2 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **human aligned instruct 9B model**. Links to other models can be found at the bottom of this page.
419
+
420
+ ## Model Details
421
+
422
+ ### Model Description
423
+
424
+ <!-- Provide a longer summary of what this model is. -->
425
+ OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
426
+
427
+
428
+ - **Developed by:** OpenLLM-Ro
429
+ <!-- - **Funded by [optional]:** [More Information Needed] -->
430
+ <!-- - **Shared by [optional]:** [More Information Needed] -->
431
+ <!-- - **Model type:** [More Information Needed] -->
432
+ - **Language(s):** Romanian
433
+ - **License:** cc-by-nc-4.0
434
+ - **Finetuned from model:** [RoGemma2-9b-Instruct-2024-10-09](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-2024-10-09)
435
+ - **Trained using:** [RoHelpSteer](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer)
436
+
437
+
438
+ ### Model Sources
439
+
440
+ <!-- Provide the basic links for the model. -->
441
+
442
+ - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
443
+ - **Paper:** https://arxiv.org/abs/2406.18266
444
+
445
+ ## Intended Use
446
+
447
+ ### Intended Use Cases
448
+
449
+ RoGemma2 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
450
+
451
+ ### Out-of-Scope Use
452
+
453
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
454
+
455
+ Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
456
+
457
+
458
+
459
+ ## How to Get Started with the Model
460
+
461
+ Use the code below to get started with the model.
462
+
463
+ ```python
464
+ from transformers import AutoTokenizer, AutoModelForCausalLM
465
+
466
+ tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2024-10-09")
467
+ model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2024-10-09")
468
+
469
+ instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
470
+ chat = [
471
+ {"role": "user", "content": instruction},
472
+ ]
473
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
474
+
475
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
476
+ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
477
+ print(tokenizer.decode(outputs[0]))
478
+ ```
479
+
480
+ ## Academic Benchmarks
481
+
482
+ <table>
483
+ <tbody>
484
+ <tr>
485
+ <td><strong>Model</strong></td>
486
+ <td><strong><center>Average</center></strong></td>
487
+ <td><strong><center>ARC</center></strong></td>
488
+ <td><strong><center>MMLU</center></strong></td>
489
+ <td><strong><center>Winogrande</center></strong></td>
490
+ <td><strong><center>Hellaswag</center></strong></td>
491
+ <td><strong><center>GSM8k</center></strong></td>
492
+ <td><strong><center>TruthfulQA</center></strong></td>
493
+ </tr>
494
+ <tr>
495
+ <td>gemma-2-9b-it</td><td><center>56.22</center></td><td><center>50.33</center></td><td><center><strong>64.01</strong></center></td><td><center>64.88</center></td><td><center><strong>63.11</strong></center></td><td><center>41.95</center></td><td><center>53.03</center></td>
496
+ </tr>
497
+ <tr>
498
+ <td>RoGemma2-9b-Instruct-2024-10-09</td><td><center>57.06</center></td><td><center><strong>56.20</strong></center></td><td><center>62.98</center></td><td><center><strong>71.00</strong></center></td><td><center>60.52</center></td><td><center>37.86</center></td><td><center><strong>53.77</strong></center></td>
499
+ </tr>
500
+ <tr>
501
+ <td><em>RoGemma2-9b-Instruct-DPO-2024-10-09</em></td><td><center><em><strong>59.08</strong></em></center></td><td><center><em>54.10</em></center></td><td><center><em>63.41</em></center></td><td><center><em>70.02</em></center></td><td><center><em>59.35</em></center></td><td><center><em><strong>57.24</strong></em></center></td><td><center><em>50.39</em></center></td>
502
+ </tr>
503
+ </tbody>
504
+ </table>
505
+
506
+
507
+ ## Downstream tasks
508
+
509
+ <table>
510
+ <tbody>
511
+ <tr>
512
+ <td></td>
513
+ <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
514
+ <td colspan="4"><center><strong>WMT</strong></center></td>
515
+ </tr>
516
+ <tr>
517
+ <td></td>
518
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
519
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
520
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
521
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
522
+ </tr>
523
+ <tr>
524
+ <td><strong>Model</strong></td>
525
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
526
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
527
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
528
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
529
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
530
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
531
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
532
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center>
533
+ </tr>
534
+ <tr>
535
+ <td>gemma-2-9b-it</td><td><center>90.82</center></td><td><center>52.51</center></td><td><center>-</center></td><td><center>-</center></td><td><center>19.97</center></td><td><center><strong>28.94</strong></center></td><td><center>-</center></td><td><center>-</center></td>
536
+ </tr>
537
+ <tr>
538
+ <td>RoGemma2-9b-Instruct-2024-10-09</td><td><center>96.19</center></td><td><center>62.49</center></td><td><center>-</center></td><td><center>-</center></td><td><center>25.74</center></td><td><center>23.16</center></td><td><center>-</center></td><td><center>-</center></td>
539
+ </tr>
540
+ <tr>
541
+ <td><em>RoGemma2-9b-Instruct-DPO-2024-10-09</em></td><td><center><em><strong>97.74</strong></em></center></td><td><center><em><strong>67.40</strong></em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em><strong>27.32</strong></em></center></td><td><center><em>15.96</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
542
+ </tr>
543
+ </tbody>
544
+ </table>
545
+
546
+
547
+ <table>
548
+ <tbody>
549
+ <tr>
550
+ <td></td>
551
+ <td colspan="4"><center><strong>XQuAD</strong></center></td>
552
+ <td colspan="4"><center><strong>STS</strong></center></td>
553
+ </tr>
554
+ <tr>
555
+ <td></td>
556
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
557
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
558
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
559
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
560
+ </tr>
561
+ <tr>
562
+ <td><strong>Model</strong></td>
563
+ <td><center><strong>(EM)</strong></center></td>
564
+ <td><center><strong>(F1)</strong></center></td>
565
+ <td><center><strong>(EM)</strong></center></td>
566
+ <td><center><strong>(F1)</strong></center></td>
567
+ <td><center><strong>(Spearman)</strong></center></td>
568
+ <td><center><strong>(Pearson)</strong></center></td>
569
+ <td><center><strong>(Spearman)</strong></center></td>
570
+ <td><center><strong>(Pearson)</strong></center></td>
571
+ </tr>
572
+ <tr>
573
+ <td>gemma-2-9b-it</td><td><center>37.56</center></td><td><center>57.48</center></td><td><center>-</center></td><td><center>-</center></td><td><center>71.39</center></td><td><center>71.73</center></td><td><center>-</center></td><td><center>-</center></td>
574
+ </tr>
575
+ <tr>
576
+ <td>RoGemma2-9b-Instruct-2024-10-09</td><td><center><strong>51.37</strong></center></td><td><center><strong>70.74</strong></center></td><td><center>-</center></td><td><center>-</center></td><td><center>77.15</center></td><td><center>77.10</center></td><td><center>-</center></td><td><center>-</center></td>
577
+ </tr>
578
+ <tr>
579
+ <td><em>RoGemma2-9b-Instruct-DPO-2024-10-09</em></td><td><center><em>32.42</em></center></td><td><center><em>58.68</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em><strong>80.82</strong></em></center></td><td><center><em><strong>81.50</strong></em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
580
+ </tr>
581
+ </tbody>
582
+ </table>
583
+
584
+ ## MT-Bench
585
+
586
+ <table>
587
+ <tbody>
588
+ <tr>
589
+ <td><strong>Model</strong></td>
590
+ <td><strong><center>Average</center></strong></td>
591
+ <td><strong><center>1st turn</center></strong></td>
592
+ <td><strong><center>2nd turn</center></strong></td>
593
+ <td><strong><center>Answers in Ro</center></strong></td>
594
+ </tr>
595
+ <tr>
596
+ <td>gemma-2-9b-it</td><td><center><strong>7.50</strong></center></td><td><center><strong>7.91</strong></center></td><td><center><strong>7.09</strong></center></td><td><center>159/160</center></td>
597
+ </tr>
598
+ <tr>
599
+ <td>RoGemma2-9b-Instruct-2024-10-09</td><td><center>6.08</center></td><td><center>6.78</center></td><td><center>5.39</center></td><td><center><strong>160/160</strong></center></td>
600
+ </tr>
601
+ <tr>
602
+ <td><em>RoGemma2-9b-Instruct-DPO-2024-10-09</em></td><td><center><em>6.77</em></center></td><td><center><em>7.24</em></center></td><td><center><em>6.30</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
603
+ </tr>
604
+ </tbody>
605
+ </table>
606
+
607
+ ## RoCulturaBench
608
+
609
+ <table>
610
+ <tbody>
611
+ <tr>
612
+ <td><strong>Model</strong></td>
613
+ <td><strong><center>Average</center></strong></td>
614
+ <td><strong><center>Answers in Ro</center></strong></td>
615
+ </tr>
616
+ <tr>
617
+ <td>gemma-2-9b-it</td><td><center><strong>5.68</strong></center></td><td><center><strong>100/100</strong></center></td>
618
+ </tr>
619
+ <tr>
620
+ <td>RoGemma2-9b-Instruct-2024-10-09</td><td><center>4.20</center></td><td><center><strong>100/100</strong></center></td>
621
+ </tr>
622
+ <tr>
623
+ <td><em>RoGemma2-9b-Instruct-DPO-2024-10-09</em></td><td><center><em>4.83</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
624
+ </tr>
625
+ </tbody>
626
+ </table>
627
+
628
+
629
+ ## RoGemma2 Model Family
630
+
631
+ | Model | Link |
632
+ |--------------------|:--------:|
633
+ |RoGemma2-9b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-2024-10-09) |
634
+ |*RoGemma2-9b-Instruct-DPO-2024-10-09*| [link](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2024-10-09) |
635
+
636
+
637
+ ## Citation
638
+
639
+ ```
640
+ @misc{masala2024vorbecstiromanecsterecipetrain,
641
+ title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
642
+ author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
643
+ year={2024},
644
+ eprint={2406.18266},
645
+ archivePrefix={arXiv},
646
+ primaryClass={cs.CL},
647
+ url={https://arxiv.org/abs/2406.18266},
648
+ }
649
+ ```
650
+ <!-- **APA:**
651
+
652
+ [More Information Needed] -->