mihaimasala commited on
Commit
ffd6950
·
verified ·
1 Parent(s): 8b2f330

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +661 -3
README.md CHANGED
@@ -1,3 +1,661 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - ro
5
+ base_model:
6
+ - google/gemma-2-9b-it
7
+ datasets:
8
+ - OpenLLM-Ro/ro_sft_alpaca
9
+ - OpenLLM-Ro/ro_sft_alpaca_gpt4
10
+ - OpenLLM-Ro/ro_sft_dolly
11
+ - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
12
+ - OpenLLM-Ro/ro_sft_norobots
13
+ - OpenLLM-Ro/ro_sft_orca
14
+ - OpenLLM-Ro/ro_sft_camel
15
+ - OpenLLM-Ro/ro_sft_oasst
16
+ - OpenLLM-Ro/ro_sft_ultrachat
17
+ model-index:
18
+ - name: OpenLLM-Ro/RoGemma2-9b-Instruct-2024-10-09
19
+ results:
20
+ - task:
21
+ type: text-generation
22
+ dataset:
23
+ name: RoMT-Bench
24
+ type: RoMT-Bench
25
+ metrics:
26
+ - name: Score
27
+ type: Score
28
+ value: 6.08
29
+ - task:
30
+ type: text-generation
31
+ dataset:
32
+ name: RoCulturaBench
33
+ type: RoCulturaBench
34
+ metrics:
35
+ - name: Score
36
+ type: Score
37
+ value: 4.20
38
+ - task:
39
+ type: text-generation
40
+ dataset:
41
+ name: Romanian_Academic_Benchmarks
42
+ type: Romanian_Academic_Benchmarks
43
+ metrics:
44
+ - name: Average accuracy
45
+ type: accuracy
46
+ value: 57.06
47
+ - task:
48
+ type: text-generation
49
+ dataset:
50
+ name: OpenLLM-Ro/ro_arc_challenge
51
+ type: OpenLLM-Ro/ro_arc_challenge
52
+ metrics:
53
+ - name: Average accuracy
54
+ type: accuracy
55
+ value: 56.20
56
+ - task:
57
+ type: text-generation
58
+ dataset:
59
+ name: OpenLLM-Ro/ro_mmlu
60
+ type: OpenLLM-Ro/ro_mmlu
61
+ metrics:
62
+ - name: Average accuracy
63
+ type: accuracy
64
+ value: 62.98
65
+ - task:
66
+ type: text-generation
67
+ dataset:
68
+ name: OpenLLM-Ro/ro_winogrande
69
+ type: OpenLLM-Ro/ro_winogrande
70
+ metrics:
71
+ - name: Average accuracy
72
+ type: accuracy
73
+ value: 71.00
74
+ - task:
75
+ type: text-generation
76
+ dataset:
77
+ name: OpenLLM-Ro/ro_hellaswag
78
+ type: OpenLLM-Ro/ro_hellaswag
79
+ metrics:
80
+ - name: Average accuracy
81
+ type: accuracy
82
+ value: 60.52
83
+ - task:
84
+ type: text-generation
85
+ dataset:
86
+ name: OpenLLM-Ro/ro_gsm8k
87
+ type: OpenLLM-Ro/ro_gsm8k
88
+ metrics:
89
+ - name: Average accuracy
90
+ type: accuracy
91
+ value: 37.86
92
+ - task:
93
+ type: text-generation
94
+ dataset:
95
+ name: OpenLLM-Ro/ro_truthfulqa
96
+ type: OpenLLM-Ro/ro_truthfulqa
97
+ metrics:
98
+ - name: Average accuracy
99
+ type: accuracy
100
+ value: 53.77
101
+ - task:
102
+ type: text-generation
103
+ dataset:
104
+ name: LaRoSeDa_binary
105
+ type: LaRoSeDa_binary
106
+ metrics:
107
+ - name: Average macro-f1
108
+ type: macro-f1
109
+ value: 96.19
110
+ - task:
111
+ type: text-generation
112
+ dataset:
113
+ name: LaRoSeDa_multiclass
114
+ type: LaRoSeDa_multiclass
115
+ metrics:
116
+ - name: Average macro-f1
117
+ type: macro-f1
118
+ value: 62.49
119
+ - task:
120
+ type: text-generation
121
+ dataset:
122
+ name: WMT_EN-RO
123
+ type: WMT_EN-RO
124
+ metrics:
125
+ - name: Average bleu
126
+ type: bleu
127
+ value: 25.74
128
+ - task:
129
+ type: text-generation
130
+ dataset:
131
+ name: WMT_RO-EN
132
+ type: WMT_RO-EN
133
+ metrics:
134
+ - name: Average bleu
135
+ type: bleu
136
+ value: 23.16
137
+ - task:
138
+ type: text-generation
139
+ dataset:
140
+ name: XQuAD
141
+ type: XQuAD
142
+ metrics:
143
+ - name: Average exact_match
144
+ type: exact_match
145
+ value: 51.37
146
+ - task:
147
+ type: text-generation
148
+ dataset:
149
+ name: XQuAD
150
+ type: XQuAD
151
+ metrics:
152
+ - name: Average f1
153
+ type: f1
154
+ value: 70.74
155
+ - task:
156
+ type: text-generation
157
+ dataset:
158
+ name: STS
159
+ type: STS
160
+ metrics:
161
+ - name: Average spearman
162
+ type: spearman
163
+ value: 77.15
164
+ - task:
165
+ type: text-generation
166
+ dataset:
167
+ name: STS
168
+ type: STS
169
+ metrics:
170
+ - name: Average pearson
171
+ type: pearson
172
+ value: 77.10
173
+ - task:
174
+ type: text-generation
175
+ dataset:
176
+ name: RoMT-Bench
177
+ type: RoMT-Bench
178
+ metrics:
179
+ - name: First turn
180
+ type: Score
181
+ value: 6.78
182
+ - name: Second turn
183
+ type: Score
184
+ value: 5.39
185
+ - task:
186
+ type: text-generation
187
+ dataset:
188
+ name: OpenLLM-Ro/ro_arc_challenge
189
+ type: OpenLLM-Ro/ro_arc_challenge
190
+ metrics:
191
+ - name: 0-shot
192
+ type: accuracy
193
+ value: 53.30
194
+ - name: 1-shot
195
+ type: accuracy
196
+ value: 54.93
197
+ - name: 3-shot
198
+ type: accuracy
199
+ value: 57.07
200
+ - name: 5-shot
201
+ type: accuracy
202
+ value: 57.33
203
+ - name: 10-shot
204
+ type: accuracy
205
+ value: 57.16
206
+ - name: 25-shot
207
+ type: accuracy
208
+ value: 57.41
209
+ - task:
210
+ type: text-generation
211
+ dataset:
212
+ name: OpenLLM-Ro/ro_mmlu
213
+ type: OpenLLM-Ro/ro_mmlu
214
+ metrics:
215
+ - name: 0-shot
216
+ type: accuracy
217
+ value: 59.20
218
+ - name: 1-shot
219
+ type: accuracy
220
+ value: 62.47
221
+ - name: 3-shot
222
+ type: accuracy
223
+ value: 64.97
224
+ - name: 5-shot
225
+ type: accuracy
226
+ value: 65.30
227
+ - task:
228
+ type: text-generation
229
+ dataset:
230
+ name: OpenLLM-Ro/ro_winogrande
231
+ type: OpenLLM-Ro/ro_winogrande
232
+ metrics:
233
+ - name: 0-shot
234
+ type: accuracy
235
+ value: 68.67
236
+ - name: 1-shot
237
+ type: accuracy
238
+ value: 71.03
239
+ - name: 3-shot
240
+ type: accuracy
241
+ value: 71.90
242
+ - name: 5-shot
243
+ type: accuracy
244
+ value: 72.38
245
+ - task:
246
+ type: text-generation
247
+ dataset:
248
+ name: OpenLLM-Ro/ro_hellaswag
249
+ type: OpenLLM-Ro/ro_hellaswag
250
+ metrics:
251
+ - name: 0-shot
252
+ type: accuracy
253
+ value: 62.29
254
+ - name: 1-shot
255
+ type: accuracy
256
+ value: 63.12
257
+ - name: 3-shot
258
+ type: accuracy
259
+ value: 61.34
260
+ - name: 5-shot
261
+ type: accuracy
262
+ value: 55.62
263
+ - name: 10-shot
264
+ type: accuracy
265
+ value: 60.25
266
+ - task:
267
+ type: text-generation
268
+ dataset:
269
+ name: OpenLLM-Ro/ro_gsm8k
270
+ type: OpenLLM-Ro/ro_gsm8k
271
+ metrics:
272
+ - name: 1-shot
273
+ type: accuracy
274
+ value: 36.77
275
+ - name: 3-shot
276
+ type: accuracy
277
+ value: 32.83
278
+ - name: 5-shot
279
+ type: accuracy
280
+ value: 43.97
281
+ - task:
282
+ type: text-generation
283
+ dataset:
284
+ name: LaRoSeDa_binary
285
+ type: LaRoSeDa_binary
286
+ metrics:
287
+ - name: 0-shot
288
+ type: macro-f1
289
+ value: 92.63
290
+ - name: 1-shot
291
+ type: macro-f1
292
+ value: 95.86
293
+ - name: 3-shot
294
+ type: macro-f1
295
+ value: 98.03
296
+ - name: 5-shot
297
+ type: macro-f1
298
+ value: 98.23
299
+ - task:
300
+ type: text-generation
301
+ dataset:
302
+ name: LaRoSeDa_multiclass
303
+ type: LaRoSeDa_multiclass
304
+ metrics:
305
+ - name: 0-shot
306
+ type: macro-f1
307
+ value: 38.51
308
+ - name: 1-shot
309
+ type: macro-f1
310
+ value: 69.70
311
+ - name: 3-shot
312
+ type: macro-f1
313
+ value: 71.38
314
+ - name: 5-shot
315
+ type: macro-f1
316
+ value: 70.37
317
+ - task:
318
+ type: text-generation
319
+ dataset:
320
+ name: WMT_EN-RO
321
+ type: WMT_EN-RO
322
+ metrics:
323
+ - name: 0-shot
324
+ type: bleu
325
+ value: 11.87
326
+ - name: 1-shot
327
+ type: bleu
328
+ value: 29.30
329
+ - name: 3-shot
330
+ type: bleu
331
+ value: 30.80
332
+ - name: 5-shot
333
+ type: bleu
334
+ value: 30.99
335
+ - task:
336
+ type: text-generation
337
+ dataset:
338
+ name: WMT_RO-EN
339
+ type: WMT_RO-EN
340
+ metrics:
341
+ - name: 0-shot
342
+ type: bleu
343
+ value: 1.03
344
+ - name: 1-shot
345
+ type: bleu
346
+ value: 22.25
347
+ - name: 3-shot
348
+ type: bleu
349
+ value: 32.75
350
+ - name: 5-shot
351
+ type: bleu
352
+ value: 36.61
353
+ - task:
354
+ type: text-generation
355
+ dataset:
356
+ name: XQuAD_EM
357
+ type: XQuAD_EM
358
+ metrics:
359
+ - name: 0-shot
360
+ type: exact_match
361
+ value: 52.60
362
+ - name: 1-shot
363
+ type: exact_match
364
+ value: 52.94
365
+ - name: 3-shot
366
+ type: exact_match
367
+ value: 49.66
368
+ - name: 5-shot
369
+ type: exact_match
370
+ value: 50.25
371
+ - task:
372
+ type: text-generation
373
+ dataset:
374
+ name: XQuAD_F1
375
+ type: XQuAD_F1
376
+ metrics:
377
+ - name: 0-shot
378
+ type: f1
379
+ value: 71.11
380
+ - name: 1-shot
381
+ type: f1
382
+ value: 71.67
383
+ - name: 3-shot
384
+ type: f1
385
+ value: 69.03
386
+ - name: 5-shot
387
+ type: f1
388
+ value: 71.15
389
+ - task:
390
+ type: text-generation
391
+ dataset:
392
+ name: STS_Spearman
393
+ type: STS_Spearman
394
+ metrics:
395
+ - name: 1-shot
396
+ type: spearman
397
+ value: 78.03
398
+ - name: 3-shot
399
+ type: spearman
400
+ value: 81.53
401
+ - name: 5-shot
402
+ type: spearman
403
+ value: 71.88
404
+ - task:
405
+ type: text-generation
406
+ dataset:
407
+ name: STS_Pearson
408
+ type: STS_Pearson
409
+ metrics:
410
+ - name: 1-shot
411
+ type: pearson
412
+ value: 79.09
413
+ - name: 3-shot
414
+ type: pearson
415
+ value: 80.89
416
+ - name: 5-shot
417
+ type: pearson
418
+ value: 71.33
419
+
420
+ ---
421
+
422
+ # Model Card for Model ID
423
+
424
+ <!-- Provide a quick summary of what the model is/does. -->
425
+
426
+ RoGemma2 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 9B model**. Links to other models can be found at the bottom of this page.
427
+
428
+ ## Model Details
429
+
430
+ ### Model Description
431
+
432
+ <!-- Provide a longer summary of what this model is. -->
433
+ OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
434
+
435
+
436
+ - **Developed by:** OpenLLM-Ro
437
+ <!-- - **Funded by [optional]:** [More Information Needed] -->
438
+ <!-- - **Shared by [optional]:** [More Information Needed] -->
439
+ <!-- - **Model type:** [More Information Needed] -->
440
+ - **Language(s):** Romanian
441
+ - **License:** cc-by-nc-4.0
442
+ - **Finetuned from model:** [gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it)
443
+ - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel), [RoOpenAssistant](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_oasst), [RoUltraChat](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_ultrachat)
444
+
445
+
446
+ ### Model Sources
447
+
448
+ <!-- Provide the basic links for the model. -->
449
+
450
+ - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
451
+ - **Paper:** https://arxiv.org/abs/2406.18266
452
+
453
+ ## Intended Use
454
+
455
+ ### Intended Use Cases
456
+
457
+ RoGemma2 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
458
+
459
+ ### Out-of-Scope Use
460
+
461
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
462
+
463
+ Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
464
+
465
+
466
+
467
+ ## How to Get Started with the Model
468
+
469
+ Use the code below to get started with the model.
470
+
471
+ ```python
472
+ from transformers import AutoTokenizer, AutoModelForCausalLM
473
+
474
+ tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoGemma2-9b-Instruct-2024-10-09")
475
+ model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoGemma2-9b-Instruct-2024-10-09")
476
+
477
+ instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
478
+ chat = [
479
+ {"role": "user", "content": instruction},
480
+ ]
481
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
482
+
483
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
484
+ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
485
+ print(tokenizer.decode(outputs[0]))
486
+ ```
487
+
488
+ ## Academic Benchmarks
489
+
490
+ <table>
491
+ <tbody>
492
+ <tr>
493
+ <td><strong>Model</strong></td>
494
+ <td><strong><center>Average</center></strong></td>
495
+ <td><strong><center>ARC</center></strong></td>
496
+ <td><strong><center>MMLU</center></strong></td>
497
+ <td><strong><center>Winogrande</center></strong></td>
498
+ <td><strong><center>Hellaswag</center></strong></td>
499
+ <td><strong><center>GSM8k</center></strong></td>
500
+ <td><strong><center>TruthfulQA</center></strong></td>
501
+ </tr>
502
+ <tr>
503
+ <td>gemma-2-9b-it</td><td><center>56.22</center></td><td><center>50.33</center></td><td><center><strong>64.01</strong></center></td><td><center>64.88</center></td><td><center><strong>63.11</strong></center></td><td><center>41.95</center></td><td><center>53.03</center></td>
504
+ </tr>
505
+ <tr>
506
+ <td><em>RoGemma2-9b-Instruct-2024-10-09</em></td><td><center><em>57.06</em></center></td><td><center><em><strong>56.20</strong></em></center></td><td><center><em>62.98</em></center></td><td><center><em><strong>71.00</strong></em></center></td><td><center><em>60.52</em></center></td><td><center><em>37.86</em></center></td><td><center><em><strong>53.77</strong></em></center></td>
507
+ </tr>
508
+ <tr>
509
+ <td>RoGemma2-9b-Instruct-DPO-2024-10-09</td><td><center><strong>59.08</strong></center></td><td><center>54.10</center></td><td><center>63.41</center></td><td><center>70.02</center></td><td><center>59.35</center></td><td><center><strong>57.24</strong></center></td><td><center>50.39</center></td>
510
+ </tr>
511
+ </tbody>
512
+ </table>
513
+
514
+
515
+ ## Downstream tasks
516
+
517
+ <table>
518
+ <tbody>
519
+ <tr>
520
+ <td></td>
521
+ <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
522
+ <td colspan="4"><center><strong>WMT</strong></center></td>
523
+ </tr>
524
+ <tr>
525
+ <td></td>
526
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
527
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
528
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
529
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
530
+ </tr>
531
+ <tr>
532
+ <td><strong>Model</strong></td>
533
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
534
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
535
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
536
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
537
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
538
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
539
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
540
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center>
541
+ </tr>
542
+ <tr>
543
+ <td>gemma-2-9b-it</td><td><center>90.82</center></td><td><center>52.51</center></td><td><center>-</center></td><td><center>-</center></td><td><center>19.97</center></td><td><center><strong>28.94</strong></center></td><td><center>-</center></td><td><center>-</center></td>
544
+ </tr>
545
+ <tr>
546
+ <td><em>RoGemma2-9b-Instruct-2024-10-09</em></td><td><center><em>96.19</em></center></td><td><center><em>62.49</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>25.74</em></center></td><td><center><em>23.16</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
547
+ </tr>
548
+ <tr>
549
+ <td>RoGemma2-9b-Instruct-DPO-2024-10-09</td><td><center><strong>97.74</strong></center></td><td><center><strong>67.40</strong></center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>27.32</strong></center></td><td><center>15.96</center></td><td><center>-</center></td><td><center>-</center></td>
550
+ </tr>
551
+ </tbody>
552
+ </table>
553
+
554
+
555
+ <table>
556
+ <tbody>
557
+ <tr>
558
+ <td></td>
559
+ <td colspan="4"><center><strong>XQuAD</strong></center></td>
560
+ <td colspan="4"><center><strong>STS</strong></center></td>
561
+ </tr>
562
+ <tr>
563
+ <td></td>
564
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
565
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
566
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
567
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
568
+ </tr>
569
+ <tr>
570
+ <td><strong>Model</strong></td>
571
+ <td><center><strong>(EM)</strong></center></td>
572
+ <td><center><strong>(F1)</strong></center></td>
573
+ <td><center><strong>(EM)</strong></center></td>
574
+ <td><center><strong>(F1)</strong></center></td>
575
+ <td><center><strong>(Spearman)</strong></center></td>
576
+ <td><center><strong>(Pearson)</strong></center></td>
577
+ <td><center><strong>(Spearman)</strong></center></td>
578
+ <td><center><strong>(Pearson)</strong></center></td>
579
+ </tr>
580
+ <tr>
581
+ <td>gemma-2-9b-it</td><td><center>37.56</center></td><td><center>57.48</center></td><td><center>-</center></td><td><center>-</center></td><td><center>71.39</center></td><td><center>71.73</center></td><td><center>-</center></td><td><center>-</center></td>
582
+ </tr>
583
+ <tr>
584
+ <td><em>RoGemma2-9b-Instruct-2024-10-09</em></td><td><center><em><strong>51.37</strong></em></center></td><td><center><em><strong>70.74</strong></em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>77.15</em></center></td><td><center><em>77.10</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
585
+ </tr>
586
+ <tr>
587
+ <td>RoGemma2-9b-Instruct-DPO-2024-10-09</td><td><center>32.42</center></td><td><center>58.68</center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>80.82</strong></center></td><td><center><strong>81.50</strong></center></td><td><center>-</center></td><td><center>-</center></td>
588
+ </tr>
589
+ </tbody>
590
+ </table>
591
+
592
+
593
+ ## MT-Bench
594
+
595
+ <table>
596
+ <tbody>
597
+ <tr>
598
+ <td><strong>Model</strong></td>
599
+ <td><strong><center>Average</center></strong></td>
600
+ <td><strong><center>1st turn</center></strong></td>
601
+ <td><strong><center>2nd turn</center></strong></td>
602
+ <td><strong><center>Answers in Ro</center></strong></td>
603
+ </tr>
604
+ <tr>
605
+ <td>gemma-2-9b-it</td><td><center><strong>7.50</strong></center></td><td><center><strong>7.91</strong></center></td><td><center><strong>7.09</strong></center></td><td><center>159/160</center></td>
606
+ </tr>
607
+ <tr>
608
+ <td><em>RoGemma2-9b-Instruct-2024-10-09</em></td><td><center><em>6.08</em></center></td><td><center><em>6.78</em></center></td><td><center><em>5.39</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
609
+ </tr>
610
+ <tr>
611
+ <td>RoGemma2-9b-Instruct-DPO-2024-10-09</td><td><center>6.77</center></td><td><center>7.24</center></td><td><center>6.30</center></td><td><center><strong>160/160</strong></center></td>
612
+ </tr>
613
+ </tbody>
614
+ </table>
615
+
616
+
617
+ ## RoCulturaBench
618
+
619
+ <table>
620
+ <tbody>
621
+ <tr>
622
+ <td><strong>Model</strong></td>
623
+ <td><strong><center>Average</center></strong></td>
624
+ <td><strong><center>Answers in Ro</center></strong></td>
625
+ </tr>
626
+ <tr>
627
+ <td>gemma-2-9b-it</td><td><center><strong>5.68</strong></center></td><td><center><strong>100/100</strong></center></td>
628
+ </tr>
629
+ <tr>
630
+ <td><em>RoGemma2-9b-Instruct-2024-10-09</em></td><td><center><em>4.20</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
631
+ </tr>
632
+ <tr>
633
+ <td>RoGemma2-9b-Instruct-DPO-2024-10-09</td><td><center>4.83</center></td><td><center><strong>100/100</strong></center></td>
634
+ </tr>
635
+ </tbody>
636
+ </table>
637
+
638
+ ## RoGemma Model Family
639
+
640
+ | Model | Link |
641
+ |--------------------|:--------:|
642
+ |*RoGemma2-9b-Instruct-2024-10-09*| [link](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-2024-10-09) |
643
+ |RoGemma2-9b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2024-10-09) |
644
+
645
+
646
+ ## Citation
647
+
648
+ ```
649
+ @misc{masala2024vorbecstiromanecsterecipetrain,
650
+ title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
651
+ author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
652
+ year={2024},
653
+ eprint={2406.18266},
654
+ archivePrefix={arXiv},
655
+ primaryClass={cs.CL},
656
+ url={https://arxiv.org/abs/2406.18266},
657
+ }
658
+ ```
659
+ <!-- **APA:**
660
+
661
+ [More Information Needed] -->