Jeronymous
commited on
Commit
·
3b2e99d
1
Parent(s):
9bfab89
Update sample code, and fix a wrong link
Browse files
README.md
CHANGED
@@ -14,8 +14,6 @@ base_model: OpenLLM-France/Claire-7B-0.1
|
|
14 |
|
15 |
## Model Details
|
16 |
|
17 |
-
### Model Description
|
18 |
-
|
19 |
This is the instruction-finetuned model based on [OpenLLM-France/Claire-7B-0.1](https://huggingface.co/OpenLLM-France/Claire-7B-0.1), using the [Vigogne dataset](https://github.com/bofenghuang/vigogne).
|
20 |
Note: This is not a chat model. The finetuning was done on instruction-following data, and the model should be used with the template as shown in "How to Get Started with the Model".
|
21 |
|
@@ -24,11 +22,6 @@ Note: This is not a chat model. The finetuning was done on instruction-following
|
|
24 |
- **License:** CC-BY-NC-SA 4.0
|
25 |
- **Finetuned from model: [OpenLLM-France/Claire-7B-0.1](https://huggingface.co/OpenLLM-France/Claire-7B-0.1)
|
26 |
|
27 |
-
### Model Sources
|
28 |
-
|
29 |
-
- **Repository:** [OpenLLM-France/Claire-7B-0.1](https://huggingface.co/OpenLLM-France/Claire-7B-EN-0.1)
|
30 |
-
- **Paper:** [Claire: Large Language Models for Spontaneous French Dialogue](https://aclanthology.org/2024.jeptalnrecital-taln.36/)
|
31 |
-
|
32 |
|
33 |
## Uses
|
34 |
|
@@ -46,40 +39,34 @@ This model may reflect biases present in the data it was trained on, potentially
|
|
46 |
Use the code below to get started with the model.
|
47 |
|
48 |
```python
|
|
|
49 |
import torch
|
50 |
-
from peft import PeftModel
|
51 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
52 |
|
53 |
-
|
54 |
-
AutoConfig,
|
55 |
-
AutoModelForCausalLM,
|
56 |
-
AutoTokenizer,
|
57 |
-
)
|
58 |
-
|
59 |
-
model_name = 'OpenLLM-France/Claire-7B-FR-Instruct-0.1'
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
device_map="
|
64 |
-
|
|
|
65 |
)
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
inputs = tokenizer([new_prompt], return_tensors = "pt")
|
76 |
-
inputs = {k:v.to('cuda') for k, v in inputs.items()}
|
77 |
-
|
78 |
-
outputs = model.generate(**inputs, max_new_tokens = 400, use_cache = True, do_sample=True, top_k=50, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
|
79 |
|
80 |
-
|
81 |
-
|
|
|
82 |
|
|
|
|
|
|
|
83 |
```
|
84 |
|
85 |
## Training Details
|
|
|
14 |
|
15 |
## Model Details
|
16 |
|
|
|
|
|
17 |
This is the instruction-finetuned model based on [OpenLLM-France/Claire-7B-0.1](https://huggingface.co/OpenLLM-France/Claire-7B-0.1), using the [Vigogne dataset](https://github.com/bofenghuang/vigogne).
|
18 |
Note: This is not a chat model. The finetuning was done on instruction-following data, and the model should be used with the template as shown in "How to Get Started with the Model".
|
19 |
|
|
|
22 |
- **License:** CC-BY-NC-SA 4.0
|
23 |
- **Finetuned from model: [OpenLLM-France/Claire-7B-0.1](https://huggingface.co/OpenLLM-France/Claire-7B-0.1)
|
24 |
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
## Uses
|
27 |
|
|
|
39 |
Use the code below to get started with the model.
|
40 |
|
41 |
```python
|
42 |
+
import transformers
|
43 |
import torch
|
|
|
|
|
44 |
|
45 |
+
model_name = "OpenLLM-France/Claire-7B-FR-Instruct-0.1"
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
48 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(model_name,
|
49 |
+
device_map="auto",
|
50 |
+
torch_dtype=torch.bfloat16,
|
51 |
+
load_in_4bit=True # For efficient inference, if supported by the GPU card
|
52 |
)
|
53 |
|
54 |
+
pipeline = transformers.pipeline("text-generation", model=model, tokenizer=tokenizer)
|
55 |
+
generation_kwargs = dict(
|
56 |
+
num_return_sequences=1, # Number of variants to generate.
|
57 |
+
return_full_text= False, # Do not include the prompt in the generated text.
|
58 |
+
max_new_tokens=200, # Maximum length for the output text.
|
59 |
+
do_sample=True, top_k=10, temperature=1.0, # Sampling parameters.
|
60 |
+
pad_token_id=tokenizer.eos_token_id, # Just to avoid a harmless warning.
|
61 |
+
)
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
prompt = "Utilisateur: {}\n\nAssistant: ".format(
|
64 |
+
"Qui était le président Français en 1995 ?"
|
65 |
+
)
|
66 |
|
67 |
+
completions = pipeline(prompt, **generation_kwargs)
|
68 |
+
for completion in completions:
|
69 |
+
print(prompt + " […]" + completion['generated_text'])
|
70 |
```
|
71 |
|
72 |
## Training Details
|