Weiyun1025
commited on
Commit
•
8cada10
1
Parent(s):
49b92b3
Upload model
Browse files- config.json +38 -0
- dcnv3.py +176 -0
- dcnv3_func.py +112 -0
- intern_image.py +554 -0
- intern_image_config.py +42 -0
- pytorch_model.bin +3 -0
config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"act_layer": "GELU",
|
3 |
+
"architectures": [
|
4 |
+
"InternImageModel"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "intern_image_config.InternImageConfig",
|
8 |
+
"AutoModel": "intern_image.InternImageModel"
|
9 |
+
},
|
10 |
+
"channels": 80,
|
11 |
+
"cls_scale": 1.5,
|
12 |
+
"core_op": "DCNv3_pytorch",
|
13 |
+
"depths": [
|
14 |
+
4,
|
15 |
+
4,
|
16 |
+
21,
|
17 |
+
4
|
18 |
+
],
|
19 |
+
"drop_path_rate": 0.1,
|
20 |
+
"drop_path_type": "linear",
|
21 |
+
"drop_rate": 0.0,
|
22 |
+
"groups": [
|
23 |
+
5,
|
24 |
+
10,
|
25 |
+
20,
|
26 |
+
40
|
27 |
+
],
|
28 |
+
"layer_scale": 1e-05,
|
29 |
+
"mlp_ratio": 4.0,
|
30 |
+
"model_type": "intern_image",
|
31 |
+
"norm_layer": "LN",
|
32 |
+
"num_classes": 1000,
|
33 |
+
"offset_scale": 1.0,
|
34 |
+
"post_norm": true,
|
35 |
+
"torch_dtype": "float32",
|
36 |
+
"transformers_version": "4.26.1",
|
37 |
+
"with_cp": false
|
38 |
+
}
|
dcnv3.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternImage
|
3 |
+
# Copyright (c) 2022 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
from __future__ import absolute_import
|
8 |
+
from __future__ import print_function
|
9 |
+
from __future__ import division
|
10 |
+
|
11 |
+
import warnings
|
12 |
+
from torch import nn
|
13 |
+
import torch.nn.functional as F
|
14 |
+
from torch.nn.init import xavier_uniform_, constant_
|
15 |
+
from .dcnv3_func import dcnv3_core_pytorch
|
16 |
+
|
17 |
+
|
18 |
+
class to_channels_first(nn.Module):
|
19 |
+
|
20 |
+
def __init__(self):
|
21 |
+
super().__init__()
|
22 |
+
|
23 |
+
def forward(self, x):
|
24 |
+
return x.permute(0, 3, 1, 2)
|
25 |
+
|
26 |
+
|
27 |
+
class to_channels_last(nn.Module):
|
28 |
+
|
29 |
+
def __init__(self):
|
30 |
+
super().__init__()
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
return x.permute(0, 2, 3, 1)
|
34 |
+
|
35 |
+
|
36 |
+
def build_norm_layer(dim,
|
37 |
+
norm_layer,
|
38 |
+
in_format='channels_last',
|
39 |
+
out_format='channels_last',
|
40 |
+
eps=1e-6):
|
41 |
+
layers = []
|
42 |
+
if norm_layer == 'BN':
|
43 |
+
if in_format == 'channels_last':
|
44 |
+
layers.append(to_channels_first())
|
45 |
+
layers.append(nn.BatchNorm2d(dim))
|
46 |
+
if out_format == 'channels_last':
|
47 |
+
layers.append(to_channels_last())
|
48 |
+
elif norm_layer == 'LN':
|
49 |
+
if in_format == 'channels_first':
|
50 |
+
layers.append(to_channels_last())
|
51 |
+
layers.append(nn.LayerNorm(dim, eps=eps))
|
52 |
+
if out_format == 'channels_first':
|
53 |
+
layers.append(to_channels_first())
|
54 |
+
else:
|
55 |
+
raise NotImplementedError(
|
56 |
+
f'build_norm_layer does not support {norm_layer}')
|
57 |
+
return nn.Sequential(*layers)
|
58 |
+
|
59 |
+
|
60 |
+
def build_act_layer(act_layer):
|
61 |
+
if act_layer == 'ReLU':
|
62 |
+
return nn.ReLU(inplace=True)
|
63 |
+
elif act_layer == 'SiLU':
|
64 |
+
return nn.SiLU(inplace=True)
|
65 |
+
elif act_layer == 'GELU':
|
66 |
+
return nn.GELU()
|
67 |
+
|
68 |
+
raise NotImplementedError(f'build_act_layer does not support {act_layer}')
|
69 |
+
|
70 |
+
|
71 |
+
def _is_power_of_2(n):
|
72 |
+
if (not isinstance(n, int)) or (n < 0):
|
73 |
+
raise ValueError(
|
74 |
+
"invalid input for _is_power_of_2: {} (type: {})".format(n, type(n)))
|
75 |
+
|
76 |
+
return (n & (n-1) == 0) and n != 0
|
77 |
+
|
78 |
+
|
79 |
+
class DCNv3_pytorch(nn.Module):
|
80 |
+
def __init__(
|
81 |
+
self, channels=64, kernel_size=3, stride=1,
|
82 |
+
pad=1, dilation=1, group=4, offset_scale=1.0,
|
83 |
+
act_layer='GELU', norm_layer='LN'):
|
84 |
+
"""
|
85 |
+
DCNv3 Module
|
86 |
+
:param channels
|
87 |
+
:param kernel_size
|
88 |
+
:param stride
|
89 |
+
:param pad
|
90 |
+
:param dilation
|
91 |
+
:param group
|
92 |
+
:param offset_scale
|
93 |
+
:param act_layer
|
94 |
+
:param norm_layer
|
95 |
+
"""
|
96 |
+
super().__init__()
|
97 |
+
if channels % group != 0:
|
98 |
+
raise ValueError(
|
99 |
+
f'channels must be divisible by group, but got {channels} and {group}')
|
100 |
+
_d_per_group = channels // group
|
101 |
+
# you'd better set _d_per_group to a power of 2 which is more efficient in our CUDA implementation
|
102 |
+
if not _is_power_of_2(_d_per_group):
|
103 |
+
warnings.warn(
|
104 |
+
"You'd better set channels in DCNv3 to make the dimension of each attention head a power of 2 "
|
105 |
+
"which is more efficient in our CUDA implementation.")
|
106 |
+
|
107 |
+
self.offset_scale = offset_scale
|
108 |
+
self.channels = channels
|
109 |
+
self.kernel_size = kernel_size
|
110 |
+
self.stride = stride
|
111 |
+
self.dilation = 1
|
112 |
+
self.pad = pad
|
113 |
+
self.group = group
|
114 |
+
self.group_channels = channels // group
|
115 |
+
self.offset_scale = offset_scale
|
116 |
+
|
117 |
+
self.dw_conv = nn.Sequential(
|
118 |
+
nn.Conv2d(
|
119 |
+
channels,
|
120 |
+
channels,
|
121 |
+
kernel_size=kernel_size,
|
122 |
+
stride=1,
|
123 |
+
padding=(kernel_size-1)//2,
|
124 |
+
groups=channels),
|
125 |
+
build_norm_layer(
|
126 |
+
channels,
|
127 |
+
norm_layer,
|
128 |
+
'channels_first',
|
129 |
+
'channels_last'),
|
130 |
+
build_act_layer(act_layer))
|
131 |
+
self.offset = nn.Linear(
|
132 |
+
channels,
|
133 |
+
group * kernel_size * kernel_size * 2)
|
134 |
+
self.mask = nn.Linear(
|
135 |
+
channels,
|
136 |
+
group * kernel_size * kernel_size)
|
137 |
+
self.input_proj = nn.Linear(channels, channels)
|
138 |
+
self.output_proj = nn.Linear(channels, channels)
|
139 |
+
self._reset_parameters()
|
140 |
+
|
141 |
+
def _reset_parameters(self):
|
142 |
+
constant_(self.offset.weight.data, 0.)
|
143 |
+
constant_(self.offset.bias.data, 0.)
|
144 |
+
constant_(self.mask.weight.data, 0.)
|
145 |
+
constant_(self.mask.bias.data, 0.)
|
146 |
+
xavier_uniform_(self.input_proj.weight.data)
|
147 |
+
constant_(self.input_proj.bias.data, 0.)
|
148 |
+
xavier_uniform_(self.output_proj.weight.data)
|
149 |
+
constant_(self.output_proj.bias.data, 0.)
|
150 |
+
|
151 |
+
def forward(self, input):
|
152 |
+
"""
|
153 |
+
:param query (N, H, W, C)
|
154 |
+
:return output (N, H, W, C)
|
155 |
+
"""
|
156 |
+
N, H, W, _ = input.shape
|
157 |
+
|
158 |
+
x = self.input_proj(input)
|
159 |
+
|
160 |
+
x1 = input.permute(0, 3, 1, 2)
|
161 |
+
x1 = self.dw_conv(x1)
|
162 |
+
offset = self.offset(x1)
|
163 |
+
mask = self.mask(x1).reshape(N, H, W, self.group, -1)
|
164 |
+
mask = F.softmax(mask, -1).reshape(N, H, W, -1)
|
165 |
+
|
166 |
+
x = dcnv3_core_pytorch(
|
167 |
+
x, offset, mask,
|
168 |
+
self.kernel_size, self.kernel_size,
|
169 |
+
self.stride, self.stride,
|
170 |
+
self.pad, self.pad,
|
171 |
+
self.dilation, self.dilation,
|
172 |
+
self.group, self.group_channels,
|
173 |
+
self.offset_scale)
|
174 |
+
x = self.output_proj(x)
|
175 |
+
|
176 |
+
return x
|
dcnv3_func.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternImage
|
3 |
+
# Copyright (c) 2022 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
from __future__ import absolute_import
|
8 |
+
from __future__ import print_function
|
9 |
+
from __future__ import division
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
|
15 |
+
def _get_reference_points(spatial_shapes, device, kernel_h, kernel_w, dilation_h, dilation_w, pad_h=0, pad_w=0, stride_h=1, stride_w=1):
|
16 |
+
_, H_, W_, _ = spatial_shapes
|
17 |
+
H_out = (H_ - (dilation_h * (kernel_h - 1) + 1)) // stride_h + 1
|
18 |
+
W_out = (W_ - (dilation_w * (kernel_w - 1) + 1)) // stride_w + 1
|
19 |
+
|
20 |
+
ref_y, ref_x = torch.meshgrid(
|
21 |
+
torch.linspace(
|
22 |
+
# pad_h + 0.5,
|
23 |
+
# H_ - pad_h - 0.5,
|
24 |
+
(dilation_h * (kernel_h - 1)) // 2 + 0.5,
|
25 |
+
(dilation_h * (kernel_h - 1)) // 2 + 0.5 + (H_out - 1) * stride_h,
|
26 |
+
H_out,
|
27 |
+
dtype=torch.float32,
|
28 |
+
device=device),
|
29 |
+
torch.linspace(
|
30 |
+
# pad_w + 0.5,
|
31 |
+
# W_ - pad_w - 0.5,
|
32 |
+
(dilation_w * (kernel_w - 1)) // 2 + 0.5,
|
33 |
+
(dilation_w * (kernel_w - 1)) // 2 + 0.5 + (W_out - 1) * stride_w,
|
34 |
+
W_out,
|
35 |
+
dtype=torch.float32,
|
36 |
+
device=device))
|
37 |
+
ref_y = ref_y.reshape(-1)[None] / H_
|
38 |
+
ref_x = ref_x.reshape(-1)[None] / W_
|
39 |
+
|
40 |
+
ref = torch.stack((ref_x, ref_y), -1).reshape(
|
41 |
+
1, H_out, W_out, 1, 2)
|
42 |
+
|
43 |
+
return ref
|
44 |
+
|
45 |
+
|
46 |
+
def _generate_dilation_grids(spatial_shapes, kernel_h, kernel_w, dilation_h, dilation_w, group, device):
|
47 |
+
_, H_, W_, _ = spatial_shapes
|
48 |
+
points_list = []
|
49 |
+
x, y = torch.meshgrid(
|
50 |
+
torch.linspace(
|
51 |
+
-((dilation_w * (kernel_w - 1)) // 2),
|
52 |
+
-((dilation_w * (kernel_w - 1)) // 2) +
|
53 |
+
(kernel_w - 1) * dilation_w, kernel_w,
|
54 |
+
dtype=torch.float32,
|
55 |
+
device=device),
|
56 |
+
torch.linspace(
|
57 |
+
-((dilation_h * (kernel_h - 1)) // 2),
|
58 |
+
-((dilation_h * (kernel_h - 1)) // 2) +
|
59 |
+
(kernel_h - 1) * dilation_h, kernel_h,
|
60 |
+
dtype=torch.float32,
|
61 |
+
device=device))
|
62 |
+
|
63 |
+
points_list.extend([x / W_, y / H_])
|
64 |
+
grid = torch.stack(points_list, -1).reshape(-1, 1, 2).\
|
65 |
+
repeat(1, group, 1).permute(1, 0, 2)
|
66 |
+
grid = grid.reshape(1, 1, 1, group * kernel_h * kernel_w, 2)
|
67 |
+
|
68 |
+
return grid
|
69 |
+
|
70 |
+
|
71 |
+
def dcnv3_core_pytorch(
|
72 |
+
input, offset, mask, kernel_h,
|
73 |
+
kernel_w, stride_h, stride_w, pad_h,
|
74 |
+
pad_w, dilation_h, dilation_w, group,
|
75 |
+
group_channels, offset_scale):
|
76 |
+
# for debug and test only,
|
77 |
+
# need to use cuda version instead
|
78 |
+
input = F.pad(
|
79 |
+
input,
|
80 |
+
[0, 0, pad_h, pad_h, pad_w, pad_w])
|
81 |
+
N_, H_in, W_in, _ = input.shape
|
82 |
+
_, H_out, W_out, _ = offset.shape
|
83 |
+
|
84 |
+
ref = _get_reference_points(
|
85 |
+
input.shape, input.device, kernel_h, kernel_w, dilation_h, dilation_w, pad_h, pad_w, stride_h, stride_w)
|
86 |
+
grid = _generate_dilation_grids(
|
87 |
+
input.shape, kernel_h, kernel_w, dilation_h, dilation_w, group, input.device)
|
88 |
+
spatial_norm = torch.tensor([W_in, H_in]).reshape(1, 1, 1, 2).\
|
89 |
+
repeat(1, 1, 1, group*kernel_h*kernel_w).to(input.device)
|
90 |
+
|
91 |
+
sampling_locations = (ref + grid * offset_scale).repeat(N_, 1, 1, 1, 1).flatten(3, 4) + \
|
92 |
+
offset * offset_scale / spatial_norm
|
93 |
+
|
94 |
+
P_ = kernel_h * kernel_w
|
95 |
+
sampling_grids = 2 * sampling_locations - 1
|
96 |
+
# N_, H_in, W_in, group*group_channels -> N_, H_in*W_in, group*group_channels -> N_, group*group_channels, H_in*W_in -> N_*group, group_channels, H_in, W_in
|
97 |
+
input_ = input.view(N_, H_in*W_in, group*group_channels).transpose(1, 2).\
|
98 |
+
reshape(N_*group, group_channels, H_in, W_in)
|
99 |
+
# N_, H_out, W_out, group*P_*2 -> N_, H_out*W_out, group, P_, 2 -> N_, group, H_out*W_out, P_, 2 -> N_*group, H_out*W_out, P_, 2
|
100 |
+
sampling_grid_ = sampling_grids.view(N_, H_out*W_out, group, P_, 2).transpose(1, 2).\
|
101 |
+
flatten(0, 1)
|
102 |
+
# N_*group, group_channels, H_out*W_out, P_
|
103 |
+
sampling_input_ = F.grid_sample(
|
104 |
+
input_, sampling_grid_, mode='bilinear', padding_mode='zeros', align_corners=False)
|
105 |
+
|
106 |
+
# (N_, H_out, W_out, group*P_) -> N_, H_out*W_out, group, P_ -> (N_, group, H_out*W_out, P_) -> (N_*group, 1, H_out*W_out, P_)
|
107 |
+
mask = mask.view(N_, H_out*W_out, group, P_).transpose(1, 2).\
|
108 |
+
reshape(N_*group, 1, H_out*W_out, P_)
|
109 |
+
output = (sampling_input_ * mask).sum(-1).view(N_,
|
110 |
+
group*group_channels, H_out*W_out)
|
111 |
+
|
112 |
+
return output.transpose(1, 2).reshape(N_, H_out, W_out, -1).contiguous()
|
intern_image.py
ADDED
@@ -0,0 +1,554 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternImage
|
3 |
+
# Copyright (c) 2022 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torch.utils.checkpoint as checkpoint
|
11 |
+
from transformers import PreTrainedModel
|
12 |
+
from timm.models.layers import trunc_normal_, DropPath
|
13 |
+
from .intern_image_config import InternImageConfig
|
14 |
+
from .dcnv3 import DCNv3_pytorch
|
15 |
+
|
16 |
+
|
17 |
+
class to_channels_first(nn.Module):
|
18 |
+
|
19 |
+
def __init__(self):
|
20 |
+
super().__init__()
|
21 |
+
|
22 |
+
def forward(self, x):
|
23 |
+
return x.permute(0, 3, 1, 2)
|
24 |
+
|
25 |
+
|
26 |
+
class to_channels_last(nn.Module):
|
27 |
+
|
28 |
+
def __init__(self):
|
29 |
+
super().__init__()
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
return x.permute(0, 2, 3, 1)
|
33 |
+
|
34 |
+
|
35 |
+
def build_norm_layer(dim,
|
36 |
+
norm_layer,
|
37 |
+
in_format='channels_last',
|
38 |
+
out_format='channels_last',
|
39 |
+
eps=1e-6):
|
40 |
+
layers = []
|
41 |
+
if norm_layer == 'BN':
|
42 |
+
if in_format == 'channels_last':
|
43 |
+
layers.append(to_channels_first())
|
44 |
+
layers.append(nn.BatchNorm2d(dim))
|
45 |
+
if out_format == 'channels_last':
|
46 |
+
layers.append(to_channels_last())
|
47 |
+
elif norm_layer == 'LN':
|
48 |
+
if in_format == 'channels_first':
|
49 |
+
layers.append(to_channels_last())
|
50 |
+
layers.append(nn.LayerNorm(dim, eps=eps))
|
51 |
+
if out_format == 'channels_first':
|
52 |
+
layers.append(to_channels_first())
|
53 |
+
else:
|
54 |
+
raise NotImplementedError(
|
55 |
+
f'build_norm_layer does not support {norm_layer}')
|
56 |
+
return nn.Sequential(*layers)
|
57 |
+
|
58 |
+
|
59 |
+
def build_act_layer(act_layer):
|
60 |
+
if act_layer == 'ReLU':
|
61 |
+
return nn.ReLU(inplace=True)
|
62 |
+
elif act_layer == 'SiLU':
|
63 |
+
return nn.SiLU(inplace=True)
|
64 |
+
elif act_layer == 'GELU':
|
65 |
+
return nn.GELU()
|
66 |
+
|
67 |
+
raise NotImplementedError(f'build_act_layer does not support {act_layer}')
|
68 |
+
class StemLayer(nn.Module):
|
69 |
+
r""" Stem layer of InternImage
|
70 |
+
Args:
|
71 |
+
in_chans (int): number of input channels
|
72 |
+
out_chans (int): number of output channels
|
73 |
+
act_layer (str): activation layer
|
74 |
+
norm_layer (str): normalization layer
|
75 |
+
"""
|
76 |
+
|
77 |
+
def __init__(self,
|
78 |
+
in_chans=3,
|
79 |
+
out_chans=96,
|
80 |
+
act_layer='GELU',
|
81 |
+
norm_layer='BN'):
|
82 |
+
super().__init__()
|
83 |
+
self.conv1 = nn.Conv2d(in_chans,
|
84 |
+
out_chans // 2,
|
85 |
+
kernel_size=3,
|
86 |
+
stride=2,
|
87 |
+
padding=1)
|
88 |
+
self.norm1 = build_norm_layer(out_chans // 2, norm_layer,
|
89 |
+
'channels_first', 'channels_first')
|
90 |
+
self.act = build_act_layer(act_layer)
|
91 |
+
self.conv2 = nn.Conv2d(out_chans // 2,
|
92 |
+
out_chans,
|
93 |
+
kernel_size=3,
|
94 |
+
stride=2,
|
95 |
+
padding=1)
|
96 |
+
self.norm2 = build_norm_layer(out_chans, norm_layer, 'channels_first',
|
97 |
+
'channels_last')
|
98 |
+
|
99 |
+
def forward(self, x):
|
100 |
+
x = self.conv1(x)
|
101 |
+
x = self.norm1(x)
|
102 |
+
x = self.act(x)
|
103 |
+
x = self.conv2(x)
|
104 |
+
x = self.norm2(x)
|
105 |
+
return x
|
106 |
+
|
107 |
+
|
108 |
+
class DownsampleLayer(nn.Module):
|
109 |
+
r""" Downsample layer of InternImage
|
110 |
+
Args:
|
111 |
+
channels (int): number of input channels
|
112 |
+
norm_layer (str): normalization layer
|
113 |
+
"""
|
114 |
+
|
115 |
+
def __init__(self, channels, norm_layer='LN'):
|
116 |
+
super().__init__()
|
117 |
+
self.conv = nn.Conv2d(channels,
|
118 |
+
2 * channels,
|
119 |
+
kernel_size=3,
|
120 |
+
stride=2,
|
121 |
+
padding=1,
|
122 |
+
bias=False)
|
123 |
+
self.norm = build_norm_layer(2 * channels, norm_layer,
|
124 |
+
'channels_first', 'channels_last')
|
125 |
+
|
126 |
+
def forward(self, x):
|
127 |
+
x = self.conv(x.permute(0, 3, 1, 2))
|
128 |
+
x = self.norm(x)
|
129 |
+
return x
|
130 |
+
|
131 |
+
|
132 |
+
class MLPLayer(nn.Module):
|
133 |
+
r""" MLP layer of InternImage
|
134 |
+
Args:
|
135 |
+
in_features (int): number of input features
|
136 |
+
hidden_features (int): number of hidden features
|
137 |
+
out_features (int): number of output features
|
138 |
+
act_layer (str): activation layer
|
139 |
+
drop (float): dropout rate
|
140 |
+
"""
|
141 |
+
|
142 |
+
def __init__(self,
|
143 |
+
in_features,
|
144 |
+
hidden_features=None,
|
145 |
+
out_features=None,
|
146 |
+
act_layer='GELU',
|
147 |
+
drop=0.):
|
148 |
+
super().__init__()
|
149 |
+
out_features = out_features or in_features
|
150 |
+
hidden_features = hidden_features or in_features
|
151 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
152 |
+
self.act = build_act_layer(act_layer)
|
153 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
154 |
+
self.drop = nn.Dropout(drop)
|
155 |
+
|
156 |
+
def forward(self, x):
|
157 |
+
x = self.fc1(x)
|
158 |
+
x = self.act(x)
|
159 |
+
x = self.drop(x)
|
160 |
+
x = self.fc2(x)
|
161 |
+
x = self.drop(x)
|
162 |
+
return x
|
163 |
+
|
164 |
+
|
165 |
+
class InternImageLayer(nn.Module):
|
166 |
+
r""" Basic layer of InternImage
|
167 |
+
Args:
|
168 |
+
core_op (nn.Module): core operation of InternImage
|
169 |
+
channels (int): number of input channels
|
170 |
+
groups (list): Groups of each block.
|
171 |
+
mlp_ratio (float): ratio of mlp hidden features to input channels
|
172 |
+
drop (float): dropout rate
|
173 |
+
drop_path (float): drop path rate
|
174 |
+
act_layer (str): activation layer
|
175 |
+
norm_layer (str): normalization layer
|
176 |
+
post_norm (bool): whether to use post normalization
|
177 |
+
layer_scale (float): layer scale
|
178 |
+
offset_scale (float): offset scale
|
179 |
+
with_cp (bool): whether to use checkpoint
|
180 |
+
"""
|
181 |
+
|
182 |
+
def __init__(self,
|
183 |
+
core_op,
|
184 |
+
channels,
|
185 |
+
groups,
|
186 |
+
mlp_ratio=4.,
|
187 |
+
drop=0.,
|
188 |
+
drop_path=0.,
|
189 |
+
act_layer='GELU',
|
190 |
+
norm_layer='LN',
|
191 |
+
post_norm=False,
|
192 |
+
layer_scale=None,
|
193 |
+
offset_scale=1.0,
|
194 |
+
with_cp=False):
|
195 |
+
super().__init__()
|
196 |
+
self.channels = channels
|
197 |
+
self.groups = groups
|
198 |
+
self.mlp_ratio = mlp_ratio
|
199 |
+
self.with_cp = with_cp
|
200 |
+
|
201 |
+
self.norm1 = build_norm_layer(channels, 'LN')
|
202 |
+
self.post_norm = post_norm
|
203 |
+
self.dcn = core_op(channels=channels,
|
204 |
+
kernel_size=3,
|
205 |
+
stride=1,
|
206 |
+
pad=1,
|
207 |
+
dilation=1,
|
208 |
+
group=groups,
|
209 |
+
offset_scale=offset_scale,
|
210 |
+
act_layer=act_layer,
|
211 |
+
norm_layer=norm_layer)
|
212 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. \
|
213 |
+
else nn.Identity()
|
214 |
+
self.norm2 = build_norm_layer(channels, 'LN')
|
215 |
+
self.mlp = MLPLayer(in_features=channels,
|
216 |
+
hidden_features=int(channels * mlp_ratio),
|
217 |
+
act_layer=act_layer,
|
218 |
+
drop=drop)
|
219 |
+
self.layer_scale = layer_scale is not None
|
220 |
+
if self.layer_scale:
|
221 |
+
self.gamma1 = nn.Parameter(layer_scale * torch.ones(channels),
|
222 |
+
requires_grad=True)
|
223 |
+
self.gamma2 = nn.Parameter(layer_scale * torch.ones(channels),
|
224 |
+
requires_grad=True)
|
225 |
+
|
226 |
+
def forward(self, x):
|
227 |
+
|
228 |
+
def _inner_forward(x):
|
229 |
+
if not self.layer_scale:
|
230 |
+
if self.post_norm:
|
231 |
+
x = x + self.drop_path(self.norm1(self.dcn(x)))
|
232 |
+
x = x + self.drop_path(self.norm2(self.mlp(x)))
|
233 |
+
else:
|
234 |
+
x = x + self.drop_path(self.dcn(self.norm1(x)))
|
235 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
236 |
+
return x
|
237 |
+
if self.post_norm:
|
238 |
+
x = x + self.drop_path(self.gamma1 * self.norm1(self.dcn(x)))
|
239 |
+
x = x + self.drop_path(self.gamma2 * self.norm2(self.mlp(x)))
|
240 |
+
else:
|
241 |
+
x = x + self.drop_path(self.gamma1 * self.dcn(self.norm1(x)))
|
242 |
+
x = x + self.drop_path(self.gamma2 * self.mlp(self.norm2(x)))
|
243 |
+
return x
|
244 |
+
|
245 |
+
if self.with_cp and x.requires_grad:
|
246 |
+
x = checkpoint.checkpoint(_inner_forward, x)
|
247 |
+
else:
|
248 |
+
x = _inner_forward(x)
|
249 |
+
return x
|
250 |
+
|
251 |
+
|
252 |
+
class InternImageBlock(nn.Module):
|
253 |
+
r""" Block of InternImage
|
254 |
+
Args:
|
255 |
+
core_op (nn.Module): core operation of InternImage
|
256 |
+
channels (int): number of input channels
|
257 |
+
depths (list): Depth of each block.
|
258 |
+
groups (list): Groups of each block.
|
259 |
+
mlp_ratio (float): ratio of mlp hidden features to input channels
|
260 |
+
drop (float): dropout rate
|
261 |
+
drop_path (float): drop path rate
|
262 |
+
act_layer (str): activation layer
|
263 |
+
norm_layer (str): normalization layer
|
264 |
+
post_norm (bool): whether to use post normalization
|
265 |
+
layer_scale (float): layer scale
|
266 |
+
offset_scale (float): offset scale
|
267 |
+
with_cp (bool): whether to use checkpoint
|
268 |
+
"""
|
269 |
+
|
270 |
+
def __init__(self,
|
271 |
+
core_op,
|
272 |
+
channels,
|
273 |
+
depth,
|
274 |
+
groups,
|
275 |
+
downsample=True,
|
276 |
+
mlp_ratio=4.,
|
277 |
+
drop=0.,
|
278 |
+
drop_path=0.,
|
279 |
+
act_layer='GELU',
|
280 |
+
norm_layer='LN',
|
281 |
+
post_norm=False,
|
282 |
+
offset_scale=1.0,
|
283 |
+
layer_scale=None,
|
284 |
+
with_cp=False):
|
285 |
+
super().__init__()
|
286 |
+
self.channels = channels
|
287 |
+
self.depth = depth
|
288 |
+
self.post_norm = post_norm
|
289 |
+
|
290 |
+
self.blocks = nn.ModuleList([
|
291 |
+
InternImageLayer(core_op=core_op,
|
292 |
+
channels=channels,
|
293 |
+
groups=groups,
|
294 |
+
mlp_ratio=mlp_ratio,
|
295 |
+
drop=drop,
|
296 |
+
drop_path=drop_path[i] if isinstance(
|
297 |
+
drop_path, list) else drop_path,
|
298 |
+
act_layer=act_layer,
|
299 |
+
norm_layer=norm_layer,
|
300 |
+
post_norm=post_norm,
|
301 |
+
layer_scale=layer_scale,
|
302 |
+
offset_scale=offset_scale,
|
303 |
+
with_cp=with_cp) for i in range(depth)
|
304 |
+
])
|
305 |
+
if not self.post_norm:
|
306 |
+
self.norm = build_norm_layer(channels, 'LN')
|
307 |
+
self.downsample = DownsampleLayer(
|
308 |
+
channels=channels, norm_layer=norm_layer) if downsample else None
|
309 |
+
|
310 |
+
def forward(self, x, return_wo_downsample=False):
|
311 |
+
for blk in self.blocks:
|
312 |
+
x = blk(x)
|
313 |
+
if not self.post_norm:
|
314 |
+
x = self.norm(x)
|
315 |
+
if return_wo_downsample:
|
316 |
+
x_ = x
|
317 |
+
if self.downsample is not None:
|
318 |
+
x = self.downsample(x)
|
319 |
+
|
320 |
+
if return_wo_downsample:
|
321 |
+
return x, x_
|
322 |
+
return x
|
323 |
+
|
324 |
+
|
325 |
+
class InternImage(nn.Module):
|
326 |
+
r""" InternImage
|
327 |
+
A PyTorch impl of : `InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions` -
|
328 |
+
https://arxiv.org/pdf/2103.14030
|
329 |
+
Args:
|
330 |
+
core_op (str): Core operator. Default: 'DCNv3'
|
331 |
+
channels (int): Number of the first stage. Default: 64
|
332 |
+
depths (list): Depth of each block. Default: [3, 4, 18, 5]
|
333 |
+
groups (list): Groups of each block. Default: [3, 6, 12, 24]
|
334 |
+
num_classes (int): Number of classes. Default: 1000
|
335 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
336 |
+
drop_rate (float): Probability of an element to be zeroed. Default: 0.
|
337 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.
|
338 |
+
act_layer (str): Activation layer. Default: 'GELU'
|
339 |
+
norm_layer (str): Normalization layer. Default: 'LN'
|
340 |
+
layer_scale (bool): Whether to use layer scale. Default: False
|
341 |
+
cls_scale (bool): Whether to use class scale. Default: False
|
342 |
+
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
|
343 |
+
"""
|
344 |
+
|
345 |
+
def __init__(self,
|
346 |
+
core_op='DCNv3_pytorch',
|
347 |
+
channels=64,
|
348 |
+
depths=[3, 4, 18, 5],
|
349 |
+
groups=[3, 6, 12, 24],
|
350 |
+
num_classes=1000,
|
351 |
+
mlp_ratio=4.,
|
352 |
+
drop_rate=0.,
|
353 |
+
drop_path_rate=0.2,
|
354 |
+
drop_path_type='linear',
|
355 |
+
act_layer='GELU',
|
356 |
+
norm_layer='LN',
|
357 |
+
layer_scale=None,
|
358 |
+
offset_scale=1.0,
|
359 |
+
post_norm=False,
|
360 |
+
cls_scale=1.5,
|
361 |
+
with_cp=False,
|
362 |
+
**kwargs):
|
363 |
+
super().__init__()
|
364 |
+
assert core_op == 'DCNv3_pytorch'
|
365 |
+
core_op = DCNv3_pytorch
|
366 |
+
|
367 |
+
self.core_op = core_op
|
368 |
+
self.num_classes = num_classes
|
369 |
+
self.num_levels = len(depths)
|
370 |
+
self.depths = depths
|
371 |
+
self.channels = channels
|
372 |
+
self.num_features = int(channels * 2**(self.num_levels - 1))
|
373 |
+
self.post_norm = post_norm
|
374 |
+
self.mlp_ratio = mlp_ratio
|
375 |
+
print(f'using core type: {core_op}')
|
376 |
+
print(f'using activation layer: {act_layer}')
|
377 |
+
print(f'using main norm layer: {norm_layer}')
|
378 |
+
print(f'using dpr: {drop_path_type}, {drop_path_rate}')
|
379 |
+
|
380 |
+
in_chans = 3
|
381 |
+
self.patch_embed = StemLayer(in_chans=in_chans,
|
382 |
+
out_chans=channels,
|
383 |
+
act_layer=act_layer,
|
384 |
+
norm_layer=norm_layer)
|
385 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
386 |
+
|
387 |
+
dpr = [
|
388 |
+
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
|
389 |
+
]
|
390 |
+
if drop_path_type == 'uniform':
|
391 |
+
for i in range(len(dpr)):
|
392 |
+
dpr[i] = drop_path_rate
|
393 |
+
|
394 |
+
self.levels = nn.ModuleList()
|
395 |
+
for i in range(self.num_levels):
|
396 |
+
level = InternImageBlock(
|
397 |
+
core_op=core_op,
|
398 |
+
channels=int(channels * 2**i),
|
399 |
+
depth=depths[i],
|
400 |
+
groups=groups[i],
|
401 |
+
mlp_ratio=self.mlp_ratio,
|
402 |
+
drop=drop_rate,
|
403 |
+
drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])],
|
404 |
+
act_layer=act_layer,
|
405 |
+
norm_layer=norm_layer,
|
406 |
+
post_norm=post_norm,
|
407 |
+
downsample=(i < self.num_levels - 1),
|
408 |
+
layer_scale=layer_scale,
|
409 |
+
offset_scale=offset_scale,
|
410 |
+
with_cp=with_cp)
|
411 |
+
self.levels.append(level)
|
412 |
+
|
413 |
+
self.conv_head = nn.Sequential(
|
414 |
+
nn.Conv2d(self.num_features,
|
415 |
+
int(self.num_features * cls_scale),
|
416 |
+
kernel_size=1,
|
417 |
+
bias=False),
|
418 |
+
build_norm_layer(int(self.num_features * cls_scale), 'BN',
|
419 |
+
'channels_first', 'channels_first'),
|
420 |
+
build_act_layer(act_layer))
|
421 |
+
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
422 |
+
self.head = nn.Linear(int(self.num_features * cls_scale), num_classes) \
|
423 |
+
if num_classes > 0 else nn.Identity()
|
424 |
+
self.num_layers = len(depths)
|
425 |
+
self.apply(self._init_weights)
|
426 |
+
self.apply(self._init_deform_weights)
|
427 |
+
|
428 |
+
def _init_weights(self, m):
|
429 |
+
if isinstance(m, nn.Linear):
|
430 |
+
trunc_normal_(m.weight, std=.02)
|
431 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
432 |
+
nn.init.constant_(m.bias, 0)
|
433 |
+
elif isinstance(m, nn.LayerNorm):
|
434 |
+
nn.init.constant_(m.bias, 0)
|
435 |
+
nn.init.constant_(m.weight, 1.0)
|
436 |
+
|
437 |
+
def _init_deform_weights(self, m):
|
438 |
+
if isinstance(m, self.core_op):
|
439 |
+
m._reset_parameters()
|
440 |
+
|
441 |
+
@torch.jit.ignore
|
442 |
+
def lr_decay_keywards(self, decay_ratio=0.87):
|
443 |
+
lr_ratios = {}
|
444 |
+
|
445 |
+
# blocks
|
446 |
+
idx = 0
|
447 |
+
for i in range(4):
|
448 |
+
layer_num = 3 - i # 3 2 1 0
|
449 |
+
for j in range(self.depths[layer_num]):
|
450 |
+
block_num = self.depths[layer_num] - j - 1
|
451 |
+
tag = 'levels.{}.blocks.{}.'.format(layer_num, block_num)
|
452 |
+
decay = 1.0 * (decay_ratio**idx)
|
453 |
+
lr_ratios[tag] = decay
|
454 |
+
idx += 1
|
455 |
+
# patch_embed (before stage-1)
|
456 |
+
lr_ratios["patch_embed"] = lr_ratios['levels.0.blocks.0.']
|
457 |
+
# levels.0.downsample (between stage-1 and stage-2)
|
458 |
+
lr_ratios["levels.0.downsample"] = lr_ratios['levels.1.blocks.0.']
|
459 |
+
lr_ratios["levels.0.norm"] = lr_ratios['levels.1.blocks.0.']
|
460 |
+
# levels.1.downsample (between stage-2 and stage-3)
|
461 |
+
lr_ratios["levels.1.downsample"] = lr_ratios['levels.2.blocks.0.']
|
462 |
+
lr_ratios["levels.1.norm"] = lr_ratios['levels.2.blocks.0.']
|
463 |
+
# levels.2.downsample (between stage-3 and stage-4)
|
464 |
+
lr_ratios["levels.2.downsample"] = lr_ratios['levels.3.blocks.0.']
|
465 |
+
lr_ratios["levels.2.norm"] = lr_ratios['levels.3.blocks.0.']
|
466 |
+
return lr_ratios
|
467 |
+
|
468 |
+
def forward_features(self, x):
|
469 |
+
x = self.patch_embed(x)
|
470 |
+
x = self.pos_drop(x)
|
471 |
+
|
472 |
+
for level in self.levels:
|
473 |
+
x = level(x)
|
474 |
+
|
475 |
+
x = self.conv_head(x.permute(0, 3, 1, 2))
|
476 |
+
x = self.avgpool(x)
|
477 |
+
x = torch.flatten(x, 1)
|
478 |
+
return x
|
479 |
+
|
480 |
+
def forward_features_seq_out(self, x):
|
481 |
+
x = self.patch_embed(x)
|
482 |
+
x = self.pos_drop(x)
|
483 |
+
|
484 |
+
seq_out = []
|
485 |
+
for level in self.levels:
|
486 |
+
x, x_ = level(x, return_wo_downsample=True)
|
487 |
+
seq_out.append(x_)
|
488 |
+
return seq_out
|
489 |
+
|
490 |
+
def forward(self, x):
|
491 |
+
x = self.forward_features(x)
|
492 |
+
x = self.head(x)
|
493 |
+
return x
|
494 |
+
|
495 |
+
|
496 |
+
class InternImageModel(PreTrainedModel):
|
497 |
+
config_class = InternImageConfig
|
498 |
+
|
499 |
+
def __init__(self, config):
|
500 |
+
super().__init__(config)
|
501 |
+
self.model = InternImage(
|
502 |
+
core_op=config.core_op,
|
503 |
+
channels=config.channels,
|
504 |
+
depths=config.depths,
|
505 |
+
groups=config.groups,
|
506 |
+
num_classes=config.num_classes,
|
507 |
+
mlp_ratio=config.mlp_ratio,
|
508 |
+
drop_rate=config.drop_rate,
|
509 |
+
drop_path_rate=config.drop_path_rate,
|
510 |
+
drop_path_type=config.drop_path_type,
|
511 |
+
act_layer=config.act_layer,
|
512 |
+
norm_layer=config.norm_layer,
|
513 |
+
layer_scale=config.layer_scale,
|
514 |
+
offset_scale=config.offset_scale,
|
515 |
+
post_norm=config.post_norm,
|
516 |
+
cls_scale=config.cls_scale,
|
517 |
+
with_cp=config.with_cp,
|
518 |
+
)
|
519 |
+
|
520 |
+
def forward(self, tensor):
|
521 |
+
return self.model.forward_features(tensor)
|
522 |
+
|
523 |
+
class InternImageModelForImageClassification(PreTrainedModel):
|
524 |
+
config_class = InternImageConfig
|
525 |
+
|
526 |
+
def __init__(self, config):
|
527 |
+
super().__init__(config)
|
528 |
+
self.model = InternImage(
|
529 |
+
core_op=config.core_op,
|
530 |
+
channels=config.channels,
|
531 |
+
depths=config.depths,
|
532 |
+
groups=config.groups,
|
533 |
+
num_classes=config.num_classes,
|
534 |
+
mlp_ratio=config.mlp_ratio,
|
535 |
+
drop_rate=config.drop_rate,
|
536 |
+
drop_path_rate=config.drop_path_rate,
|
537 |
+
drop_path_type=config.drop_path_type,
|
538 |
+
act_layer=config.act_layer,
|
539 |
+
norm_layer=config.norm_layer,
|
540 |
+
layer_scale=config.layer_scale,
|
541 |
+
offset_scale=config.offset_scale,
|
542 |
+
post_norm=config.post_norm,
|
543 |
+
cls_scale=config.cls_scale,
|
544 |
+
with_cp=config.with_cp,
|
545 |
+
)
|
546 |
+
|
547 |
+
def forward(self, tensor, labels=None):
|
548 |
+
logits = self.model(tensor)
|
549 |
+
|
550 |
+
if labels is not None:
|
551 |
+
loss = F.cross_entropy(logits, labels)
|
552 |
+
return {'loss': loss, 'logits': logits}
|
553 |
+
|
554 |
+
return {'logits': logits}
|
intern_image_config.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
class InternImageConfig(PretrainedConfig):
|
4 |
+
model_type = "intern_image"
|
5 |
+
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
core_op='DCNv3_pytorch',
|
9 |
+
channels=64,
|
10 |
+
depths=(4, 4, 18, 4),
|
11 |
+
groups=(4, 8, 16, 32),
|
12 |
+
num_classes=1000,
|
13 |
+
mlp_ratio=4.,
|
14 |
+
drop_rate=0.,
|
15 |
+
drop_path_rate=0.1,
|
16 |
+
drop_path_type='linear',
|
17 |
+
act_layer='GELU',
|
18 |
+
norm_layer='LN',
|
19 |
+
layer_scale=None,
|
20 |
+
offset_scale=1.0,
|
21 |
+
post_norm=False,
|
22 |
+
cls_scale=1.5,
|
23 |
+
with_cp=False,
|
24 |
+
**kwargs,
|
25 |
+
):
|
26 |
+
self.core_op = core_op
|
27 |
+
self.channels = channels
|
28 |
+
self.depths = depths
|
29 |
+
self.groups = groups
|
30 |
+
self.num_classes = num_classes
|
31 |
+
self.mlp_ratio = mlp_ratio
|
32 |
+
self.drop_rate = drop_rate
|
33 |
+
self.drop_path_rate = drop_path_rate
|
34 |
+
self.drop_path_type = drop_path_type
|
35 |
+
self.act_layer = act_layer
|
36 |
+
self.norm_layer = norm_layer
|
37 |
+
self.layer_scale = layer_scale
|
38 |
+
self.offset_scale = offset_scale
|
39 |
+
self.post_norm = post_norm
|
40 |
+
self.cls_scale = cls_scale
|
41 |
+
self.with_cp = with_cp
|
42 |
+
super().__init__(**kwargs)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8990666dd19e4f61673704b1a3104c0a097f500c0b145718f22ac936d3cfeb72
|
3 |
+
size 200561443
|