|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch InternLM2 model.""" |
|
import math |
|
import queue |
|
import threading |
|
import warnings |
|
from typing import List, Optional, Tuple, Union, Callable |
|
from internvl.model.internlm2.configuration_internlm2 import InternLM2Config |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
import torch.distributed as dist |
|
from einops import rearrange |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import (BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
SequenceClassifierOutputWithPast) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import (add_start_docstrings, |
|
add_start_docstrings_to_model_forward, logging, |
|
replace_return_docstrings) |
|
from internvl.train.compress_seq_trainer import chunk_with_boundaries |
|
try: |
|
from transformers.generation.streamers import BaseStreamer |
|
except: |
|
BaseStreamer = None |
|
|
|
from .configuration_internlm2 import InternLM2Config |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = 'InternLM2Config' |
|
FINAL_SIZE=100 |
|
flash_attn_func, flash_attn_varlen_func = None, None |
|
pad_input, index_first_axis, unpad_input = None, None, None |
|
try: |
|
from flash_attn import flash_attn_func as _flash_attn_func |
|
from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func |
|
from flash_attn.bert_padding import index_first_axis as _index_first_axis |
|
from flash_attn.bert_padding import pad_input as _pad_input |
|
from flash_attn.bert_padding import unpad_input as _unpad_input |
|
|
|
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func |
|
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input |
|
has_flash_attn = True |
|
except: |
|
has_flash_attn = False |
|
class AttentionPooling(nn.Module): |
|
def __init__(self, input_dim, n_prime): |
|
""" |
|
input_dim: 输入特征的维度 C |
|
n_prime: 希望保留的时间步数量 N' |
|
""" |
|
super(AttentionPooling, self).__init__() |
|
self.query = nn.Linear(input_dim, n_prime) |
|
|
|
def forward(self, x): |
|
""" |
|
x: 输入 Tensor,形状为 (batch_size, seq_len, input_dim) |
|
返回: (batch_size, n_prime, input_dim) |
|
""" |
|
|
|
attention_scores = self.query(x) |
|
|
|
|
|
attention_weights = F.softmax(attention_scores, dim=1) |
|
|
|
|
|
output = torch.einsum('bni,bnd->bid', attention_weights, x) |
|
|
|
return output |
|
class TopKPooling(nn.Module): |
|
def __init__(self, input_dim, n_prime): |
|
""" |
|
input_dim: 输入特征的维度 C |
|
n_prime: 希望保留的时间步数量 N' |
|
""" |
|
super(TopKPooling, self).__init__() |
|
self.query = nn.Linear(input_dim, 1) |
|
self.n_prime = n_prime |
|
|
|
def forward(self, x): |
|
""" |
|
x: 输入 Tensor,形状为 (batch_size, seq_len, input_dim) |
|
返回: (batch_size, n_prime, input_dim) |
|
""" |
|
|
|
attention_scores = self.query(x).squeeze(-1) |
|
|
|
|
|
topk_scores, topk_indices = torch.topk(attention_scores, self.n_prime, dim=1) |
|
|
|
|
|
batch_indices = torch.arange(x.size(0)).unsqueeze(-1).expand(-1, self.n_prime) |
|
selected_x = x[batch_indices, topk_indices] |
|
|
|
|
|
attention_weights = F.softmax(topk_scores, dim=1).unsqueeze(-1) |
|
|
|
|
|
output = selected_x * attention_weights |
|
|
|
return output |
|
class LayerScale(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
init_values: float = 1e-5, |
|
inplace: bool = False, |
|
) -> None: |
|
super().__init__() |
|
self.inplace = inplace |
|
self.gamma = nn.Parameter(init_values * torch.ones(dim)) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return x.mul_(self.gamma) if self.inplace else x * self.gamma |
|
class Sigmoid(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
init_values: float = 0.0, |
|
inplace: bool = False, |
|
) -> None: |
|
super().__init__() |
|
self.inplace = inplace |
|
self.gate = nn.Parameter(init_values * torch.ones(dim)) |
|
def forward(self, x1,x2): |
|
return x1*torch.sigmoid(self.gate)+x2*(1-torch.sigmoid(self.gate)) |
|
def _import_flash_attn(): |
|
global flash_attn_func, flash_attn_varlen_func |
|
global pad_input, index_first_axis, unpad_input |
|
try: |
|
from flash_attn import flash_attn_func as _flash_attn_func |
|
from flash_attn import \ |
|
flash_attn_varlen_func as _flash_attn_varlen_func |
|
from flash_attn.bert_padding import \ |
|
index_first_axis as _index_first_axis |
|
from flash_attn.bert_padding import pad_input as _pad_input |
|
from flash_attn.bert_padding import unpad_input as _unpad_input |
|
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func |
|
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input |
|
except ImportError: |
|
raise ImportError('flash_attn is not installed.') |
|
|
|
|
|
|
|
def _get_unpad_data(attention_mask): |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) |
|
return ( |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 |
|
): |
|
""" |
|
Make causal mask used for bi-directional self-attention. |
|
""" |
|
bsz, tgt_len = input_ids_shape |
|
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device) |
|
mask_cond = torch.arange(mask.size(-1), device=device) |
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) |
|
mask = mask.to(dtype) |
|
|
|
if past_key_values_length > 0: |
|
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) |
|
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) |
|
|
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) |
|
|
|
|
|
|
|
class InternLM2RMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
InternLM2RMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
try: |
|
from functools import partial |
|
|
|
from apex.normalization import FusedRMSNorm |
|
InternLM2RMSNorm = partial(FusedRMSNorm, eps=1e-6) |
|
print('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternLM2RMSNorm') |
|
except ImportError: |
|
|
|
pass |
|
except Exception: |
|
print('discovered apex but it failed to load, falling back to InternLM2RMSNorm') |
|
pass |
|
|
|
|
|
|
|
class InternLM2RotaryEmbedding(nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
self.inv_freq = None |
|
|
|
|
|
|
|
self.max_seq_len_cached = -1 |
|
|
|
|
|
|
|
|
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
if self.inv_freq is None: |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)) |
|
del self.inv_freq |
|
self.register_buffer('inv_freq', inv_freq, persistent=False) |
|
|
|
|
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype) |
|
|
|
|
|
freqs = torch.outer(t, self.inv_freq.to(device=t.device)) |
|
|
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False) |
|
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
|
|
|
|
|
|
if seq_len > self.max_seq_len_cached: |
|
|
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
|
return ( |
|
self.cos_cached[:seq_len].to(dtype=x.dtype), |
|
self.sin_cached[:seq_len].to(dtype=x.dtype), |
|
) |
|
def scale_position_ids(position_ids, scaling_factor,selected): |
|
|
|
position_ids = position_ids.squeeze(0) |
|
|
|
|
|
diff = torch.diff(position_ids) |
|
is_arithmetic = (diff == 1) |
|
|
|
|
|
if is_arithmetic.sum() == 0: |
|
return position_ids.unsqueeze(0) |
|
|
|
|
|
|
|
changes = torch.where(is_arithmetic[:-1] != is_arithmetic[1:])[0] + 1 |
|
chunks_indices = torch.cat([torch.tensor([0]).to(position_ids.device), changes, torch.tensor([len(position_ids)]).to(position_ids.device)]) |
|
|
|
|
|
scaled_positions = torch.empty_like(position_ids, dtype=torch.float32) |
|
last_scaled_value = None |
|
last_value = None |
|
|
|
for i in range(len(chunks_indices) - 1): |
|
start, end = chunks_indices[i], chunks_indices[i + 1] |
|
chunk = position_ids[start:end] |
|
is_arith = is_arithmetic[start] |
|
|
|
if is_arith: |
|
if last_scaled_value is not None and chunk[0]!=0: |
|
|
|
|
|
|
|
scaled_chunk = chunk * scaling_factor - chunk[0]*scaling_factor+torch.ceil(last_scaled_value+chunk[0]-last_value) |
|
else: |
|
scaled_chunk = chunk * scaling_factor |
|
last_scaled_value = scaled_chunk[-1] |
|
last_value = chunk[-1] |
|
else: |
|
if last_scaled_value is not None and chunk[0]!=0: |
|
|
|
|
|
offset = torch.ceil(last_scaled_value+scaling_factor) -chunk[0] |
|
scaled_chunk = offset + (chunk) |
|
else: |
|
scaled_chunk = chunk |
|
last_scaled_value = scaled_chunk[-1] |
|
last_value = chunk[-1] |
|
|
|
scaled_positions[start:end] = scaled_chunk |
|
|
|
return scaled_positions.unsqueeze(0) |
|
class InternLM2newRotaryEmbedding(nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None,scaling_factor=1.0,scale_img=False): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
self.inv_freq = None |
|
self.scaling_factor=scaling_factor |
|
self.scale_img=scale_img |
|
|
|
|
|
|
|
self.max_seq_len_cached = -1 |
|
|
|
|
|
|
|
|
|
|
|
def _set_cos_sin_cache(self, pos_id, device, dtype,selected): |
|
if self.inv_freq is None: |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)) |
|
del self.inv_freq |
|
self.register_buffer('inv_freq', inv_freq, persistent=False) |
|
|
|
if self.scaling_factor!=1.0: |
|
if self.scale_img: |
|
pos_id=pos_id*self.scaling_factor |
|
else: |
|
pos_id=scale_position_ids(pos_id,self.scaling_factor,selected) |
|
pos_id=pos_id.squeeze(0) |
|
freqs = torch.outer(pos_id, self.inv_freq.to(device=pos_id.device)) |
|
|
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False) |
|
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False) |
|
|
|
def forward(self, x, global_posid=None,selected=None): |
|
|
|
self._set_cos_sin_cache(pos_id=global_posid, device=x.device, dtype=x.dtype,selected=selected) |
|
|
|
return ( |
|
self.cos_cached[:].to(dtype=x.dtype), |
|
self.sin_cached[:].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding): |
|
"""InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" |
|
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
if self.inv_freq is None: |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)) |
|
del self.inv_freq |
|
self.register_buffer('inv_freq', inv_freq, persistent=False) |
|
|
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype) |
|
|
|
t = t / self.scaling_factor |
|
|
|
|
|
|
|
|
|
freqs = torch.outer(t, self.inv_freq.to(device=t.device)) |
|
|
|
|
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False) |
|
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
|
|
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding): |
|
"""InternLM2RotaryEmbedding extended with Dynamic NTK scaling. |
|
Credits to the Reddit users /u/bloc97 and /u/emozilla. |
|
""" |
|
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
if self.inv_freq is None: |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)) |
|
del self.inv_freq |
|
self.register_buffer('inv_freq', inv_freq, persistent=False) |
|
|
|
|
|
self.max_seq_len_cached = seq_len |
|
|
|
if seq_len > self.max_position_embeddings: |
|
base = self.base * ( |
|
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) |
|
) ** (self.dim / (self.dim - 2)) |
|
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer('inv_freq', inv_freq, persistent=False) |
|
|
|
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype) |
|
|
|
|
|
freqs = torch.outer(t, self.inv_freq.to(device=t.device)) |
|
|
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False) |
|
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
class InternLM2RotaryEmbedding2D(nn.Module): |
|
def __init__(self, dim, max_position_embeddings=16, base=100, device=None): |
|
""" |
|
For image of 16x16 tokens, only 16x16 position embeddings are needed |
|
Base is set to 100, distinguishing from the global implementation, smaller base is used for fewer max tokens |
|
Modify if needed |
|
""" |
|
super().__init__() |
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
|
|
theta = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)) |
|
x = torch.arange(max_position_embeddings, device=device).to(dtype=theta.dtype) |
|
y = torch.arange(max_position_embeddings, device=device).to(dtype=theta.dtype) |
|
|
|
freqs_x = torch.outer(x, theta[0::2].to(device=x.device)) |
|
freqs_y = torch.outer(y, theta[1::2].to(device=y.device)) |
|
|
|
freqs_x = torch.cat((freqs_x, freqs_x), dim=-1) |
|
freqs_y = torch.cat((freqs_y, freqs_y), dim=-1) |
|
|
|
freqs = torch.zeros(max_position_embeddings, max_position_embeddings, self.dim, device=device, dtype=torch.float32) |
|
freqs[..., 0::2] = freqs_x[:, None, :] |
|
freqs[..., 1::2] = freqs_y[None, :, :] |
|
|
|
self.cos = freqs.cos() |
|
self.sin = freqs.sin() |
|
|
|
def forward(self, x: torch.Tensor, h: int, w: int): |
|
""" |
|
h and w are shape of image |
|
shape of x does not matter since only dtype is used |
|
""" |
|
return ( |
|
self.cos[:h, :w].to(dtype=x.dtype), |
|
self.sin[:h, :w].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2:] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors.""" |
|
cos = cos[position_ids].unsqueeze(unsqueeze_dim).float() |
|
sin = sin[position_ids].unsqueeze(unsqueeze_dim).float() |
|
q_dtype, k_dtype = q.dtype, k.dtype |
|
q, k = q.float(), k.float() |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed.to(dtype=q_dtype), k_embed.to(dtype=k_dtype) |
|
def apply_rotary_pos_emb_single(states, cos, sin, position_ids, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the states tensors.""" |
|
cos = cos[position_ids].unsqueeze(unsqueeze_dim).float() |
|
sin = sin[position_ids].unsqueeze(unsqueeze_dim).float() |
|
states_dtype = states.dtype |
|
states = states.float() |
|
states_embed = (states * cos) + (rotate_half(states) * sin) |
|
return states_embed.to(dtype=states_dtype) |
|
|
|
def apply_rotary_pos_emb_2D( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
cos: torch.Tensor, |
|
sin: torch.Tensor, |
|
position_ids: torch.Tensor=None |
|
): |
|
""" |
|
Input (q, k) shape: [bs, num_attention_heads, h, w, hidden_dim] for both |
|
Input (cos, sin) shape: [h, w, hidden_dim] for both, which is guaranteed by InternLM2RotaryEmbedding2D.forward, so no sqeeze or transpose is needed for cos and sin. But for q and k, be causious! |
|
position_ids is a 3D tensor, the first dimension represents squence of tokens, the next two represent (x, y) ids. default is torch.stack(torch.meshgrid(torch.arange(h), torch.arange(w), indexing='ij'), dim=-1) |
|
|
|
output shape: [bs, num_attention_heads, h, w, hidden_dim] |
|
|
|
Example: |
|
h = w = 16 |
|
embedding2D = InternLM2RotaryEmbedding2D(dim) |
|
q = torch.randn(bs, num_head, h, w, dim) |
|
k = torch.randn(bs, num_head, h, w, dim) |
|
cos, sin = embedding2D(q, h, w) |
|
q_embed, k_embed = apply_rotary_pos_emb_2D(q, k, cos, sin) |
|
print(q_embed.shape, k_embed.shape) |
|
""" |
|
if position_ids is None: |
|
h, w, _ = cos.size() |
|
position_ids = torch.stack(torch.meshgrid(torch.arange(h), torch.arange(w), indexing='ij'), dim=-1) |
|
x_pos = position_ids[..., 0] |
|
y_pos = position_ids[..., 1] |
|
cos = cos[x_pos, y_pos].float() |
|
sin = sin[x_pos, y_pos].float() |
|
q_dtype, k_dtype = q.dtype, k.dtype |
|
q, k = q.float(), k.float() |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed.to(dtype=q_dtype), k_embed.to(dtype=k_dtype) |
|
|
|
|
|
class InternLM2MLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, x): |
|
down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x)) |
|
|
|
return down_proj |
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
class InternLM2Attention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: InternLM2Config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.is_causal = True |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}' |
|
f' and `num_heads`: {self.num_heads}).' |
|
) |
|
|
|
self.wqkv = nn.Linear( |
|
self.hidden_size, |
|
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim, |
|
bias=config.bias, |
|
) |
|
|
|
self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias) |
|
self._init_rope() |
|
|
|
def _init_rope(self): |
|
|
|
|
|
if self.training: |
|
self.config.rope_scaling['factor']=1.0 |
|
|
|
self.config.rope_scaling['type']='new' |
|
|
|
if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0: |
|
print(f'{self.config.rope_scaling}') |
|
|
|
if self.config.rope_scaling is None: |
|
self.rotary_emb = InternLM2RotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.config.rope_theta, |
|
) |
|
else: |
|
scaling_type = self.config.rope_scaling['type'] |
|
scaling_factor = self.config.rope_scaling['factor'] |
|
assert scaling_type == 'new' |
|
if scaling_type == 'dynamic': |
|
self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.config.rope_theta, |
|
scaling_factor=scaling_factor, |
|
) |
|
elif scaling_type == 'linear': |
|
|
|
self.rotary_emb = InternLM2LinearScalingRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.config.rope_theta, |
|
scaling_factor=scaling_factor, |
|
) |
|
elif scaling_type == 'new': |
|
self.rotary_emb = InternLM2newRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.config.rope_theta, |
|
scaling_factor=scaling_factor, |
|
scale_img=self.config.scale_img, |
|
) |
|
else: |
|
raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.") |
|
return self.rotary_emb |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if 'padding_mask' in kwargs: |
|
warnings.warn( |
|
'Passing `padding_mask` is deprecated and will be removed in v4.37. ' |
|
'Please make sure use `attention_mask` instead.`' |
|
) |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
qkv_states = self.wqkv(hidden_states) |
|
|
|
qkv_states = rearrange( |
|
qkv_states, |
|
'b q (h gs d) -> b q h gs d', |
|
gs=2 + self.num_key_value_groups, |
|
d=self.head_dim, |
|
) |
|
|
|
query_states = qkv_states[..., : self.num_key_value_groups, :] |
|
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d') |
|
key_states = qkv_states[..., -2, :] |
|
value_states = qkv_states[..., -1, :] |
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): |
|
raise ValueError( |
|
f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is' |
|
f' {attn_weights.size()}' |
|
) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}' |
|
) |
|
attn_weights = attn_weights + attention_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is' |
|
f' {attn_output.size()}' |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.wo(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
|
|
class InternLM2FlashAttention2(InternLM2Attention): |
|
""" |
|
InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays |
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of |
|
flash attention and deal with padding tokens in case the input contains any of them. |
|
""" |
|
def init_interactions(self): |
|
if self.config.posid_type == 'qkLearnable': |
|
self.num_image_token = 256 |
|
self.local_posid = nn.Embedding(self.num_image_token, self.config.hidden_size) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
selected: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
|
|
|
|
if 'padding_mask' in kwargs: |
|
warnings.warn( |
|
'Passing `padding_mask` is deprecated and will be removed in v4.37. ' |
|
'Please make sure use `attention_mask` instead.`' |
|
) |
|
|
|
|
|
attention_mask = kwargs.pop('padding_mask') |
|
output_attentions = False |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
qkv_states = self.wqkv(hidden_states) |
|
|
|
|
|
qkv_states = rearrange( |
|
qkv_states, |
|
'b q (h gs d) -> b q h gs d', |
|
gs=2 + self.num_key_value_groups, |
|
d=self.head_dim, |
|
) |
|
query_states = qkv_states[..., : self.num_key_value_groups, :] |
|
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d') |
|
key_states = qkv_states[..., -2, :] |
|
value_states = qkv_states[..., -1, :] |
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
if self.config.posid_type == 'qkLearnable': |
|
image_pos_emb = self.local_posid(torch.arange(self.num_image_token).to(query_states.device)) |
|
num_images = selected.shape[0] // self.num_image_token |
|
image_indices = selected.view(num_images, self.num_image_token) |
|
for i in range(num_images): |
|
image_token_indices = image_indices[i] |
|
image_query_states = torch.index_select(query_states, dim=2, index=image_token_indices) |
|
image_key_states = torch.index_select(key_states, dim=2, index=image_token_indices) |
|
image_query_states += image_pos_emb.unsqueeze(0).unsqueeze(0) |
|
image_key_states += image_pos_emb.unsqueeze(0).unsqueeze(0) |
|
query_states.index_copy_(2, image_token_indices, image_query_states) |
|
key_states.index_copy_(2, image_token_indices, image_key_states) |
|
|
|
kv_seq_len=position_ids.max()+1 |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
if self.config.posid_type != 'default': |
|
cos, sin = self.rotary_emb(value_states, global_posid=position_ids,selected=selected) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, torch.arange(0,position_ids.shape[1]).unsqueeze(0)) |
|
else: |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
if past_key_value is not None: |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
attn_output = self._flash_attention_forward( |
|
query_states, key_states, value_states, attention_mask, q_len |
|
) |
|
|
|
|
|
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() |
|
|
|
attn_output = self.wo(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
def _flash_attention_forward( |
|
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None |
|
): |
|
""" |
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token |
|
first unpad the input, then computes the attention scores and pad the final attention scores. |
|
|
|
Args: |
|
query_states (`torch.Tensor`): |
|
Input query states to be passed to Flash Attention API |
|
key_states (`torch.Tensor`): |
|
Input key states to be passed to Flash Attention API |
|
value_states (`torch.Tensor`): |
|
Input value states to be passed to Flash Attention API |
|
attention_mask (`torch.Tensor`): |
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the |
|
position of padding tokens and 1 for the position of non-padding tokens. |
|
dropout (`int`, *optional*): |
|
Attention dropout |
|
softmax_scale (`float`, *optional*): |
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) |
|
""" |
|
|
|
causal = self.is_causal and query_length != 1 |
|
if attention_mask is not None: |
|
batch_size = query_states.shape[0] |
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input( |
|
query_states, key_states, value_states, attention_mask, query_length |
|
) |
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
|
|
attn_output_unpad = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
group = local_group |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) |
|
else: |
|
attn_output = flash_attn_func( |
|
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal |
|
) |
|
|
|
return attn_output |
|
|
|
def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): |
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) |
|
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape |
|
|
|
key_layer = index_first_axis( |
|
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k |
|
) |
|
value_layer = index_first_axis( |
|
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k |
|
) |
|
|
|
if query_length == kv_seq_len: |
|
query_layer = index_first_axis( |
|
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k |
|
) |
|
cu_seqlens_q = cu_seqlens_k |
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k |
|
indices_q = indices_k |
|
elif query_length == 1: |
|
max_seqlen_in_batch_q = 1 |
|
cu_seqlens_q = torch.arange( |
|
batch_size + 1, dtype=torch.int32, device=query_layer.device |
|
) |
|
indices_q = cu_seqlens_q[:-1] |
|
query_layer = query_layer.squeeze(1) |
|
else: |
|
|
|
attention_mask = attention_mask[:, -query_length:] |
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) |
|
|
|
return ( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
indices_q.to(torch.int64), |
|
(cu_seqlens_q, cu_seqlens_k), |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), |
|
) |
|
class InternLM2CrossAttention(nn.Module): |
|
"""Cross-attention mechanism.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}' |
|
f' and `num_heads`: {self.num_heads}).' |
|
) |
|
|
|
|
|
self.wq = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias) |
|
|
|
|
|
|
|
self.wkv = nn.Linear( |
|
self.hidden_size, 2 * self.num_key_value_heads * self.head_dim, bias=config.bias |
|
) |
|
|
|
self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias) |
|
self._init_rope() |
|
def reuse_self_attention_params(self, self_attn: nn.Module): |
|
""" |
|
从 Self-Attention 模块中复用参数:wo 和拆分后的 wqkv。 |
|
|
|
Args: |
|
self_attn (nn.Module): 输入的 Self-Attention 模块。 |
|
""" |
|
|
|
|
|
self.wo.weight.data = self_attn.wo.weight.data.clone() |
|
if self.config.bias: |
|
self.wo.bias.data = self_attn.wo.bias.data.clone() if self.config.bias else None |
|
|
|
|
|
group_num = self.num_key_value_heads |
|
wqkv_weight = self_attn.wqkv.weight |
|
chunks=torch.chunk(wqkv_weight,group_num,dim=0) |
|
q_weights_list=[c[:self.num_key_value_groups*self.head_dim,:] for c in chunks] |
|
kv_weights_list=[c[self.num_key_value_groups*self.head_dim:,:] for c in chunks] |
|
q_weights=torch.cat(q_weights_list,dim=0) |
|
kv_weights=torch.cat(kv_weights_list,dim=0) |
|
if self.config.bias: |
|
wqkv_bias = self_attn.wqkv.bias.data if self.config.bias else None |
|
|
|
|
|
q_end = self.num_heads * self.head_dim |
|
kv_end = q_end + 2 * self.num_key_value_heads * self.head_dim |
|
|
|
|
|
self.wq.weight.data = q_weights.clone() |
|
if self.config.bias: |
|
raise NotImplementedError() |
|
self.wq.bias.data = wqkv_bias[:q_end].clone() |
|
|
|
self.wkv.weight.data = kv_weights.clone() |
|
if self.config.bias: |
|
self.wkv.bias.data = wqkv_bias[q_end:kv_end].clone() |
|
def _init_rope(self): |
|
if self.config.rope_scaling is None: |
|
self.rotary_emb = InternLM2RotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.config.max_position_embeddings, |
|
base=self.config.rope_theta, |
|
) |
|
else: |
|
scaling_type = self.config.rope_scaling['type'] |
|
scaling_factor = self.config.rope_scaling['factor'] |
|
if scaling_type == 'dynamic': |
|
self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.config.max_position_embeddings, |
|
base=self.config.rope_theta, |
|
scaling_factor=scaling_factor, |
|
) |
|
elif scaling_type == 'linear': |
|
self.rotary_emb = InternLM2LinearScalingRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.config.max_position_embeddings, |
|
base=self.config.rope_theta, |
|
scaling_factor=scaling_factor, |
|
) |
|
else: |
|
raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.") |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
src_len = encoder_hidden_states.size(1) |
|
|
|
query_states = self.wq(hidden_states) |
|
|
|
query_states=rearrange(query_states,'b q (h gs d) -> b q h gs d', gs=self.num_key_value_groups ,d=self.head_dim,) |
|
|
|
|
|
kv_states = self.wkv(encoder_hidden_states) |
|
kv_states = rearrange( |
|
kv_states, 'b q (h gs d) -> b q h gs d', gs= 2 ,d=self.head_dim, |
|
) |
|
key_states, value_states = kv_states.chunk(2, dim=-2) |
|
key_states=rearrange(key_states,'b q h gs d->b q (h gs) d') |
|
value_states=rearrange(value_states,'b q h gs d->b q (h gs) d') |
|
query_states=rearrange(query_states,'b q h gs d->b q (h gs) d') |
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
q_seq_len = query_states.shape[-2] |
|
cos_q, sin_q = self.rotary_emb(value_states, seq_len=q_seq_len) |
|
cos_k, sin_k = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
if position_ids is None: |
|
position_ids_q=torch.arange(0,q_seq_len).unsqueeze(0).cuda() |
|
position_ids_k=torch.arange(0,kv_seq_len).unsqueeze(0).cuda() |
|
query_states, key_states = apply_rotary_pos_emb_single(query_states, cos_q, sin_q, position_ids_q),apply_rotary_pos_emb_single(key_states,cos_k,sin_k,position_ids_k) |
|
if past_key_value is not None: |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states=repeat_kv(value_states,self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_seq_len, kv_seq_len): |
|
raise ValueError( |
|
f'Attention weights should be of size {(bsz, self.num_heads, q_seq_len, kv_seq_len)}, but is ' |
|
f'{attn_weights.size()}' |
|
) |
|
|
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_seq_len, kv_seq_len): |
|
raise ValueError( |
|
f'Attention mask should be of size {(bsz, 1, q_seq_len, kv_seq_len)}, but is ' |
|
f'{attention_mask.size()}' |
|
) |
|
attn_weights = attn_weights + attention_mask |
|
|
|
if encoder_attention_mask is not None: |
|
if encoder_attention_mask.size() != (bsz, 1, 1, kv_seq_len): |
|
raise ValueError( |
|
f'Encoder attention mask should be of size {(bsz, 1, 1, kv_seq_len)}, but is ' |
|
f'{encoder_attention_mask.size()}' |
|
) |
|
attn_weights = attn_weights + encoder_attention_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_seq_len, self.head_dim): |
|
raise ValueError( |
|
f'Attention output should be of size {(bsz, self.num_heads, q_seq_len, self.head_dim)}, but is ' |
|
f'{attn_output.size()}' |
|
) |
|
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.view(bsz, q_seq_len, self.hidden_size) |
|
|
|
|
|
attn_output = self.wo(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
|
|
return attn_output |
|
|
|
|
|
class InternLM2CrossAttentionForPackedTraining(InternLM2FlashAttention2): |
|
def __init__(self, config: InternLM2Config): |
|
super().__init__(config) |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.is_causal = True |
|
|
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size} ' |
|
f'and `num_heads`: {self.num_heads}).' |
|
) |
|
|
|
|
|
self.wq = nn.Linear( |
|
self.hidden_size, |
|
self.num_heads * self.head_dim, |
|
bias=config.bias, |
|
) |
|
|
|
self.wkv = nn.Linear( |
|
self.hidden_size, |
|
2 * self.num_key_value_heads * self.head_dim, |
|
bias=config.bias, |
|
) |
|
|
|
|
|
self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias) |
|
|
|
|
|
self._init_rope() |
|
def reuse_self_attention_params(self, self_attn: nn.Module): |
|
""" |
|
从 Self-Attention 模块中复用参数:wo 和拆分后的 wqkv。 |
|
|
|
Args: |
|
self_attn (nn.Module): 输入的 Self-Attention 模块。 |
|
""" |
|
|
|
|
|
self.wo.weight.data = self_attn.wo.weight.data.clone() |
|
if self.config.bias: |
|
self.wo.bias.data = self_attn.wo.bias.data.clone() if self.config.bias else None |
|
|
|
|
|
group_num = self.num_key_value_heads |
|
wqkv_weight = self_attn.wqkv.weight |
|
chunks=torch.chunk(wqkv_weight,group_num,dim=0) |
|
q_weights_list=[c[:self.num_key_value_groups*self.head_dim,:] for c in chunks] |
|
kv_weights_list=[c[self.num_key_value_groups*self.head_dim:,:] for c in chunks] |
|
q_weights=torch.cat(q_weights_list,dim=0) |
|
kv_weights=torch.cat(kv_weights_list,dim=0) |
|
if self.config.bias: |
|
wqkv_bias = self_attn.wqkv.bias.data if self.config.bias else None |
|
|
|
|
|
q_end = self.num_heads * self.head_dim |
|
kv_end = q_end + 2 * self.num_key_value_heads * self.head_dim |
|
|
|
|
|
self.wq.weight.data = q_weights.clone() |
|
if self.config.bias: |
|
raise NotImplementedError() |
|
self.wq.bias.data = wqkv_bias[:q_end].clone() |
|
|
|
self.wkv.weight.data = kv_weights.clone() |
|
if self.config.bias: |
|
self.wkv.bias.data = wqkv_bias[q_end:kv_end].clone() |
|
|
|
def forward( |
|
self, |
|
query_seq, key_value_seq, |
|
cu_seqlens_q, cu_seqlens_k, |
|
position_ids: Optional[Tuple] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
if 'padding_mask' in kwargs: |
|
warnings.warn( |
|
'Passing `padding_mask` is deprecated and will be removed in v4.37. ' |
|
'Please make sure use `attention_mask` instead.`' |
|
) |
|
|
|
|
|
attention_mask = kwargs.pop('padding_mask') |
|
output_attentions = False |
|
|
|
bsz, q_len, _ = query_seq.size() |
|
query_states = self.wq(query_seq) |
|
key_value_states = self.wkv(key_value_seq) |
|
query_states = rearrange( |
|
query_states, |
|
'b q (h gs d) -> b q h gs d', |
|
gs=self.num_key_value_groups, |
|
d=self.head_dim, |
|
) |
|
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d') |
|
key_value_states=rearrange( |
|
key_value_states, |
|
'b q (h gs d) -> b q h gs d', |
|
gs=2, |
|
d=self.head_dim |
|
) |
|
key_states = key_value_states[..., 0, :] |
|
value_states = key_value_states[..., 1, :] |
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
q_position_ids, kv_position_ids = position_ids |
|
kv_seq_len = kv_position_ids.max()+1 |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
q_seq_len = q_position_ids.max()+1 |
|
if past_key_value is not None: |
|
q_seq_len += past_key_value[0].shape[-2] |
|
|
|
|
|
|
|
|
|
|
|
cos, sin = self.rotary_emb(value_states, seq_len=q_seq_len) |
|
|
|
|
|
|
|
|
|
if kv_position_ids[0][0]!=0: |
|
kv_position_ids=kv_position_ids-kv_position_ids[0][0] |
|
|
|
query_states, key_states = apply_rotary_pos_emb_single(query_states, cos, sin, q_position_ids), apply_rotary_pos_emb_single(key_states, cos, sin, kv_position_ids) |
|
|
|
|
|
if past_key_value is not None: |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attn_output = self._flash_cross_attention_forward( |
|
query_states, key_states, value_states, cu_seqlens_q, cu_seqlens_k |
|
) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() |
|
|
|
attn_output = self.wo(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
return attn_output |
|
def _flash_cross_attention_forward( |
|
self, query_states, key_states, value_states, |
|
cu_seqlens_q, cu_seqlens_k, dropout=0.0, softmax_scale=None |
|
): |
|
""" |
|
Computes cross attention using Flash Attention. |
|
|
|
Args: |
|
query_states (`torch.Tensor`): |
|
Input query states (shape: [1, total_q, nheads, headdim]). |
|
key_states (`torch.Tensor`): |
|
Input key states (shape: [1, total_k, nheads, headdim]). |
|
value_states (`torch.Tensor`): |
|
Input value states (shape: [1, total_k, nheads, headdim]). |
|
cu_seqlens_q (`torch.Tensor`): |
|
Cumulative sequence lengths of query sequences in the batch (shape: [batch_size + 1]). |
|
cu_seqlens_k (`torch.Tensor`): |
|
Cumulative sequence lengths of key/value sequences in the batch (shape: [batch_size + 1]). |
|
dropout (`float`, *optional*): |
|
Attention dropout. |
|
softmax_scale (`float`, *optional*): |
|
Scaling factor for QK^T before softmax (default: 1 / sqrt(headdim)). |
|
""" |
|
|
|
query_states = query_states.squeeze(0) |
|
key_states = key_states.squeeze(0) |
|
value_states = value_states.squeeze(0) |
|
|
|
cu_seqlens_q=cu_seqlens_q.squeeze(0) |
|
cu_seqlens_k=cu_seqlens_k.squeeze(0) |
|
|
|
with torch.no_grad(): |
|
max_seqlen_q = max([ |
|
cu_seqlens_q[idx + 1] - cu_seqlens_q[idx] |
|
for idx in range(cu_seqlens_q.size(0) - 1) |
|
]).item() |
|
|
|
max_seqlen_k = max([ |
|
cu_seqlens_k[idx + 1] - cu_seqlens_k[idx] |
|
for idx in range(cu_seqlens_k.size(0) - 1) |
|
]).item() |
|
|
|
|
|
causal = self.is_causal |
|
|
|
assert causal==False |
|
|
|
|
|
attn_output = flash_attn_varlen_func( |
|
q=query_states, |
|
k=key_states, |
|
v=value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_q, |
|
max_seqlen_k=max_seqlen_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
|
|
if torch.isnan(attn_output).any(): |
|
raise ValueError("Attention output contains NaN values") |
|
|
|
|
|
query_states = query_states.unsqueeze(0) |
|
key_states = key_states.unsqueeze(0) |
|
value_states = value_states.unsqueeze(0) |
|
|
|
return attn_output |
|
|
|
INTERNLM2_ATTENTION_CLASSES = { |
|
'eager': InternLM2Attention, |
|
'flash_attention_2': InternLM2FlashAttention2, |
|
} |
|
|
|
|
|
|
|
class InternLM2DecoderLayer(nn.Module): |
|
def __init__(self, config: InternLM2Config): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
|
|
self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config) |
|
|
|
self.feed_forward = InternLM2MLP(config) |
|
self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.config=config |
|
def init_interactions(self,compress_seq=False,fuse_method='add', compress_method='avg'): |
|
self.attention.init_interactions() |
|
|
|
if compress_seq: |
|
self.compress_seq=True |
|
self.interaction=INTERNLM2_ATTENTION_CLASSES[self.config.attn_implementation](config=self.config) |
|
self.layer_scale=LayerScale(self.config.hidden_size,init_values=1e-3) |
|
self.sigmoid_layer_scale = Sigmoid(self.config.hidden_size) |
|
|
|
self.fuse_method=fuse_method |
|
if self.fuse_method=='cross-attn': |
|
self.fuse_layer=InternLM2CrossAttentionForPackedTraining(self.config) |
|
self.fuse_layer.reuse_self_attention_params(self.attention) |
|
elif self.fuse_method=='simple-cross-attn': |
|
self.fuse_layer=InternLM2CrossAttention(self.config) |
|
self.fuse_layer.reuse_self_attention_params(self.attention) |
|
elif self.fuse_method=='add': |
|
self.fuse_layer=None |
|
else: |
|
raise NotImplementedError() |
|
self.compress_method=compress_method |
|
if compress_method=='attention': |
|
self.pooling_layer=AttentionPooling(self.config.hidden_size, FINAL_SIZE) |
|
elif compress_method=='topk': |
|
self.pooling_layer=TopKPooling(self.config.hidden_size, FINAL_SIZE) |
|
elif compress_method=='avg': |
|
self.pooling_layer=None |
|
else: |
|
raise NotImplementedError() |
|
|
|
for layer_param, interaction_param in zip(self.attention.parameters(), self.interaction.parameters()): |
|
interaction_param.data.copy_(layer_param.data) |
|
else: |
|
self.compress_seq=False |
|
|
|
def fuse(self,compressed_data,hidden_states,inner_idx=0,chunk_num=None,chunk_size=100,cu_seqlens_q=None, cu_seqlens_k=None,method='add',position_ids=None): |
|
if method=='add': |
|
|
|
return self.layer_scale(torch.sum(compressed_data[:,:inner_idx*chunk_size,:],dim=1))+hidden_states |
|
|
|
elif method=='cross-attn': |
|
cu_seqlens_k_list=chunk_with_boundaries(cu_seqlens_k[0][-1],cu_seqlens_k,chunk_num) |
|
if inner_idx==0: |
|
return hidden_states+0.0*self.fuse_layer(hidden_states,compressed_data[:,inner_idx*chunk_size:(inner_idx+1)*chunk_size,:],cu_seqlens_q,cu_seqlens_k_list[inner_idx],position_ids=(position_ids[0],position_ids[1][:,inner_idx*chunk_size:(inner_idx+1)*chunk_size])) |
|
else: |
|
return self.layer_scale(self.fuse_layer(hidden_states,compressed_data[:,(inner_idx-1)*chunk_size:inner_idx*chunk_size,:],cu_seqlens_q,cu_seqlens_k_list[inner_idx],position_ids=(position_ids[0],position_ids[1][:,(inner_idx-1)*chunk_size:inner_idx*chunk_size])))+hidden_states |
|
else: |
|
raise ValueError(f"Unknown method: {method}") |
|
def compress2(self, hidden_states, pos_ids, method='avg', final_size=FINAL_SIZE): |
|
if method == 'avg': |
|
B, N, C = hidden_states.shape |
|
|
|
|
|
step_size = N // final_size |
|
|
|
|
|
averaged_groups = [ |
|
hidden_states[:, i * step_size: (i + 1) * step_size, :].mean(dim=1, keepdim=True) |
|
for i in range(final_size) |
|
] |
|
|
|
|
|
pos_ids_groups = [ |
|
pos_ids[:, i * step_size: (i + 1) * step_size].median(dim=1, keepdim=True).values |
|
for i in range(final_size) |
|
] |
|
|
|
|
|
result = torch.cat(averaged_groups, dim=1) |
|
pos_ids_res = torch.cat(pos_ids_groups, dim=1) |
|
|
|
return result, pos_ids_res |
|
def compress(self,hidden_states,method='avg',final_size=FINAL_SIZE): |
|
if method=='avg': |
|
B, N, C = hidden_states.shape |
|
|
|
|
|
step_size = N // final_size |
|
|
|
|
|
averaged_groups = [ |
|
hidden_states[:, i * step_size: (i + 1) * step_size, :].mean(dim=1, keepdim=True) |
|
for i in range(final_size) |
|
] |
|
|
|
|
|
result = torch.cat(averaged_groups, dim=1) |
|
|
|
return result |
|
elif method=='attention': |
|
return self.pooling_layer(hidden_states) |
|
elif method=='topk': |
|
return self.pooling_layer(hidden_states) |
|
else: |
|
raise ValueError(f"Unknown method: {method}") |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
origin_cu_seq_lens: Optional[torch.Tensor] = None, |
|
fuse_only: Optional[torch.Tensor] = False, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
selected: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): |
|
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, |
|
query_sequence_length, key_sequence_length)` if default attention is used. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
""" |
|
if 'padding_mask' in kwargs: |
|
warnings.warn( |
|
'Passing `padding_mask` is deprecated and will be removed in v4.37. ' |
|
'Please make sure use `attention_mask` instead.`' |
|
) |
|
residual = hidden_states |
|
|
|
hidden_states = self.attention_norm(hidden_states) |
|
if not hasattr(self,'compress_seq'): |
|
self.compress_seq=False |
|
if self.compress_seq: |
|
if fuse_only: |
|
_, length, channels= hidden_states.shape |
|
PADDING_LENGTH=8192 |
|
|
|
padding_size = PADDING_LENGTH - length |
|
|
|
|
|
pad_hidden_states = torch.zeros((hidden_states.size(0), padding_size, channels), device=hidden_states.device).to(hidden_states.dtype) |
|
|
|
pad_hidden_states = torch.cat((hidden_states, pad_hidden_states), dim=1) |
|
pad_all_hiddenstates=GatherLayer.apply(pad_hidden_states) |
|
length_tensor = torch.tensor([length], dtype=torch.int).cuda() |
|
origin_length_tensor=GatherLayer.apply(length_tensor) |
|
|
|
|
|
|
|
if inner_idx>0: |
|
prev_seq=pad_all_hiddenstates[:inner_idx] |
|
|
|
prev_len=origin_length_tensor[:inner_idx] |
|
B = prev_seq.size(1) |
|
C = prev_seq.size(3) |
|
|
|
|
|
unpad_hidden_states_list = [] |
|
|
|
for i in range(prev_len.size(0)): |
|
|
|
valid_hidden_states = prev_seq[i, :B, :prev_len[i], :] |
|
unpad_hidden_states_list.append(valid_hidden_states) |
|
|
|
|
|
prev_hidden_states = torch.cat(unpad_hidden_states_list, dim=1) |
|
else: |
|
assert dist.get_rank()==0 |
|
prev_seq=pad_all_hiddenstates[:1] |
|
|
|
prev_len=origin_length_tensor[:1] |
|
B = prev_seq.size(1) |
|
C = prev_seq.size(3) |
|
|
|
|
|
unpad_hidden_states_list = [] |
|
|
|
for i in range(prev_len.size(0)): |
|
|
|
valid_hidden_states = prev_seq[i, :B, :prev_len[i], :] |
|
unpad_hidden_states_list.append(valid_hidden_states) |
|
|
|
|
|
prev_hidden_states = torch.cat(unpad_hidden_states_list, dim=1) |
|
|
|
|
|
|
|
prev_position_id = torch.arange(0,prev_hidden_states.size(1)).unsqueeze(0).cuda() |
|
prev_hidden_states,prev_position_id=self.compress2(prev_hidden_states,prev_position_id) |
|
cu_seqlens_k = torch.tensor([[0,prev_hidden_states.size(1)]],dtype=attention_mask.dtype,device=attention_mask.device) |
|
right_bound = prev_len.sum().item() |
|
|
|
left_bound = right_bound-length_tensor.item() |
|
position_ids = torch.arange(left_bound,right_bound).unsqueeze(0).cuda() |
|
|
|
else: |
|
_, length, _ = hidden_states.shape |
|
length_tensor = torch.tensor([length], dtype=torch.int).cuda() |
|
compressed_chunk = self.compress(hidden_states,method=self.compress_method) |
|
B, N, C = compressed_chunk.shape |
|
compressed_data=GatherLayer.apply(compressed_chunk) |
|
origin_length_tensor=GatherLayer.apply(length_tensor) |
|
origin_length=torch.sum(origin_length_tensor,dim=0).unsqueeze(1) |
|
pn_size = compressed_data.size(0) * compressed_data.size(2) |
|
compressed_data = compressed_data.reshape(-1, pn_size, compressed_data.size(3)) |
|
new_length=compressed_data.shape[1] |
|
new_cu_seq_lens=origin_cu_seq_lens*new_length//origin_length |
|
new_cu_seq_lens=new_cu_seq_lens.to(torch.int32).to(hidden_states.device) |
|
compressed_pos_id=torch.arange(0,compressed_data.shape[1]).unsqueeze(0).repeat(B,1).cuda() |
|
compressed_data = self.interaction(compressed_data, new_cu_seq_lens, compressed_pos_id, None, output_attentions, use_cache)[0] |
|
chunk_num=compressed_data.size(1)//N |
|
|
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.attention( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
selected=selected, |
|
**kwargs, |
|
) |
|
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.ffn_norm(hidden_states) |
|
hidden_states = self.feed_forward(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
InternLM2_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`InternLM2Config`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
|
|
@add_start_docstrings( |
|
'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.', |
|
InternLM2_START_DOCSTRING, |
|
) |
|
class InternLM2PreTrainedModel(PreTrainedModel): |
|
config_class = InternLM2Config |
|
base_model_prefix = 'model' |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ['InternLM2DecoderLayer'] |
|
_skip_keys_device_placement = 'past_key_values' |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
InternLM2_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or |
|
when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't |
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` |
|
of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
|
|
@add_start_docstrings( |
|
'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.', |
|
InternLM2_START_DOCSTRING, |
|
) |
|
class GatherLayer(torch.autograd.Function): |
|
"""Gather tensors from all process, supporting backward propagation.""" |
|
|
|
@staticmethod |
|
def forward(ctx, input): |
|
ctx.save_for_backward(input) |
|
output = [torch.zeros_like(input) for _ in range(dist.get_world_size(local_group))] |
|
dist.all_gather(output, input, group=local_group) |
|
return torch.stack(output, 0) |
|
|
|
@staticmethod |
|
def backward(ctx, grads): |
|
(input,) = ctx.saved_tensors |
|
dist.all_reduce(grads, group=local_group) |
|
grad_out = torch.zeros_like(input) |
|
grad_out[:] = grads[dist.get_rank(local_group)] |
|
return grad_out |
|
|
|
class InternLM2Model(InternLM2PreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`] |
|
|
|
Args: |
|
config: InternLM2Config |
|
""" |
|
|
|
_auto_class = 'AutoModel' |
|
|
|
def __init__(self, config: InternLM2Config): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
self.config = config |
|
if not has_flash_attn: |
|
self.config.attn_implementation = 'eager' |
|
print('Warning: Flash attention is not available, using eager attention instead.') |
|
|
|
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
|
self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
def init_interactions(self,compress_seq, fuse_method='add', compress_method='avg'): |
|
|
|
for layer in self.layers: |
|
layer.init_interactions(compress_seq,fuse_method,compress_method) |
|
|
|
def get_input_embeddings(self): |
|
return self.tok_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.tok_embeddings = value |
|
|
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): |
|
|
|
|
|
combined_attention_mask = None |
|
if input_shape[-1] > 1: |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, |
|
inputs_embeds.dtype, |
|
device=inputs_embeds.device, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
if attention_mask is not None: |
|
|
|
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( |
|
inputs_embeds.device |
|
) |
|
combined_attention_mask = ( |
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
compress_seq: Optional[bool] = False, |
|
group_list: Optional[List] = None, |
|
chunk_num: Optional[int] = None, |
|
origin_cu_seq_lens: Optional[torch.tensor] = None, |
|
interaction: Optional[bool] = True, |
|
selected: Optional[torch.tensor] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
|
|
global local_group |
|
if group_list is not None: |
|
for group_idx,group in enumerate(group_list): |
|
if type(group)==torch.distributed.distributed_c10d.ProcessGroup: |
|
|
|
break |
|
global inner_idx |
|
inner_idx = dist.get_rank(group) |
|
local_group=group |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if self.config.attn_implementation == 'flash_attention_2': |
|
_import_flash_attn() |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time') |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape[:2] |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length = inputs_embeds.shape[:2] |
|
else: |
|
raise ValueError('You have to specify either input_ids or inputs_embeds') |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.tok_embeddings(input_ids) |
|
if self.config.posid_type=='qkLearnable': |
|
img_embeds=inputs_embeds[selected] |
|
if self.config.attn_implementation == 'flash_attention_2': |
|
|
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None |
|
else: |
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device |
|
) |
|
attention_mask = self._prepare_decoder_attention_mask( |
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length |
|
) |
|
|
|
|
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...' |
|
) |
|
use_cache = False |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = () if use_cache else None |
|
for idx, decoder_layer in enumerate(self.layers): |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
fuse_only = not interaction |
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, output_attentions, None) |
|
|
|
return custom_forward |
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(decoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
origin_cu_seq_lens, |
|
fuse_only, |
|
None, |
|
selected, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
origin_cu_seq_lens=origin_cu_seq_lens, |
|
fuse_only=fuse_only, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
selected=selected, |
|
) |
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
def fuse(self,idx ,compressed_data,hidden_states,inner_idx=0,chunk_num=None,chunk_size=100,cu_seqlens_q=None, cu_seqlens_k=None,method='add',fuse_layer=None,position_ids=None): |
|
if method=='add': |
|
|
|
return self.layer_scale[idx](torch.sum(compressed_data[:,:inner_idx*chunk_size,:],dim=1))+hidden_states |
|
|
|
elif method=='cross-attn': |
|
cu_seqlens_k_list=chunk_with_boundaries(cu_seqlens_k[0][-1],cu_seqlens_k,chunk_num) |
|
if inner_idx==0: |
|
return hidden_states+0.0*fuse_layer(hidden_states,compressed_data[:,inner_idx*chunk_size:(inner_idx+1)*chunk_size,:],cu_seqlens_q,cu_seqlens_k_list[inner_idx],position_ids=(position_ids[0],position_ids[1][:,inner_idx*chunk_size:(inner_idx+1)*chunk_size])) |
|
else: |
|
return self.layer_scale[idx](fuse_layer(hidden_states,compressed_data[:,(inner_idx-1)*chunk_size:inner_idx*chunk_size,:],cu_seqlens_q,cu_seqlens_k_list[inner_idx],position_ids=(position_ids[0],position_ids[1][:,(inner_idx-1)*chunk_size:inner_idx*chunk_size])))+hidden_states |
|
else: |
|
raise ValueError(f"Unknown method: {method}") |
|
def compress(self,idx,hidden_states, method='avg',final_size=FINAL_SIZE): |
|
if method=='avg': |
|
B, N, C = hidden_states.shape |
|
|
|
|
|
step_size = N // final_size |
|
|
|
|
|
averaged_groups = [ |
|
hidden_states[:, i * step_size: (i + 1) * step_size, :].mean(dim=1, keepdim=True) |
|
for i in range(final_size) |
|
] |
|
|
|
|
|
result = torch.cat(averaged_groups, dim=1) |
|
|
|
return result |
|
elif method=='attention': |
|
return self.pooling_layers[idx](hidden_states) |
|
elif method=='topk': |
|
return self.pooling_layers[idx](hidden_states) |
|
else: |
|
raise ValueError(f"Unknown method: {method}") |
|
|
|
|
|
|
|
class InternLM2ForCausalLM(InternLM2PreTrainedModel): |
|
_auto_class = 'AutoModelForCausalLM' |
|
|
|
_tied_weights_keys = ['output.weight'] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = InternLM2Model(config) |
|
self.vocab_size = config.vocab_size |
|
self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.tok_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.tok_embeddings = value |
|
|
|
def get_output_embeddings(self): |
|
return self.output |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.output = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
compress_seq: Optional[bool] = False, |
|
group_list: Optional[List] = None, |
|
chunk_num: Optional[int] = 1, |
|
origin_cu_seq_lens: Optional[torch.tensor] = None, |
|
interaction: Optional[bool] = True, |
|
selected: Optional[torch.tensor] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, InternLM2ForCausalLM |
|
|
|
>>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
compress_seq=compress_seq, |
|
group_list=group_list, |
|
chunk_num=chunk_num, |
|
origin_cu_seq_lens=origin_cu_seq_lens, |
|
interaction=interaction, |
|
selected=selected, |
|
) |
|
hidden_states = outputs[0] |
|
logits = self.output(hidden_states) |
|
logits = logits.float() |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
output = CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
output['logits'] = output['logits'].to(device) |
|
return output |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
if past_key_values is not None: |
|
past_length = past_key_values[0][0].shape[2] |
|
|
|
|
|
if input_ids.shape[1] > past_length: |
|
remove_prefix_length = past_length |
|
else: |
|
|
|
remove_prefix_length = input_ids.shape[1] - 1 |
|
|
|
input_ids = input_ids[:, remove_prefix_length:] |
|
|
|
position_ids = kwargs.get('position_ids', None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1]:] |
|
elif position_ids is not None: |
|
if self.rope_pos_id_version!='default' and past_key_values is not None: |
|
position_ids=(position_ids[:,-1]+attention_mask[:,position_ids.shape[1]:].sum(dim=1)).unsqueeze(1) |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {'inputs_embeds': inputs_embeds} |
|
else: |
|
model_inputs = {'input_ids': input_ids} |
|
model_inputs.update( |
|
{ |
|
'position_ids': position_ids, |
|
'past_key_values': past_key_values, |
|
'use_cache': kwargs.get('use_cache'), |
|
'attention_mask': attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
|
|
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''): |
|
if tokenizer.add_bos_token: |
|
prompt = '' |
|
else: |
|
prompt = tokenizer.bos_token |
|
if meta_instruction: |
|
prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n""" |
|
for record in history: |
|
prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n""" |
|
prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n""" |
|
return tokenizer([prompt], return_tensors='pt') |
|
|
|
@torch.no_grad() |
|
def chat( |
|
self, |
|
tokenizer, |
|
query: str, |
|
history: List[Tuple[str, str]] = [], |
|
streamer: Optional[BaseStreamer] = None, |
|
max_new_tokens: int = 1024, |
|
do_sample: bool = True, |
|
temperature: float = 0.8, |
|
top_p: float = 0.8, |
|
meta_instruction: str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n' |
|
'- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n' |
|
'- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.', |
|
**kwargs, |
|
): |
|
inputs = self.build_inputs(tokenizer, query, history, meta_instruction) |
|
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)} |
|
|
|
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]] |
|
outputs = self.generate( |
|
**inputs, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=do_sample, |
|
temperature=temperature, |
|
top_p=top_p, |
|
eos_token_id=eos_token_id, |
|
**kwargs, |
|
) |
|
outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):] |
|
response = tokenizer.decode(outputs, skip_special_tokens=True) |
|
response = response.split('<|im_end|>')[0] |
|
history = history + [(query, response)] |
|
return response, history |
|
|
|
@torch.no_grad() |
|
def stream_chat( |
|
self, |
|
tokenizer, |
|
query: str, |
|
history: List[Tuple[str, str]] = [], |
|
max_new_tokens: int = 1024, |
|
do_sample: bool = True, |
|
temperature: float = 0.8, |
|
top_p: float = 0.8, |
|
**kwargs, |
|
): |
|
""" |
|
Return a generator in format: (response, history) |
|
Eg. |
|
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')]) |
|
('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')]) |
|
""" |
|
if BaseStreamer is None: |
|
raise ModuleNotFoundError( |
|
'The version of `transformers` is too low. Please make sure ' |
|
'that you have installed `transformers>=4.28.0`.' |
|
) |
|
|
|
response_queue = queue.Queue(maxsize=20) |
|
|
|
class ChatStreamer(BaseStreamer): |
|
def __init__(self, tokenizer) -> None: |
|
super().__init__() |
|
self.tokenizer = tokenizer |
|
self.queue = response_queue |
|
self.query = query |
|
self.history = history |
|
self.response = '' |
|
self.cache = [] |
|
self.received_inputs = False |
|
self.queue.put((self.response, history + [(self.query, self.response)])) |
|
|
|
def put(self, value): |
|
if len(value.shape) > 1 and value.shape[0] > 1: |
|
raise ValueError('ChatStreamer only supports batch size 1') |
|
elif len(value.shape) > 1: |
|
value = value[0] |
|
|
|
if not self.received_inputs: |
|
|
|
self.received_inputs = True |
|
return |
|
|
|
self.cache.extend(value.tolist()) |
|
token = self.tokenizer.decode(self.cache, skip_special_tokens=True) |
|
if token.strip() != '<|im_end|>': |
|
self.response = self.response + token |
|
history = self.history + [(self.query, self.response)] |
|
self.queue.put((self.response, history)) |
|
self.cache = [] |
|
else: |
|
self.end() |
|
|
|
def end(self): |
|
self.queue.put(None) |
|
|
|
def stream_producer(): |
|
return self.chat( |
|
tokenizer=tokenizer, |
|
query=query, |
|
streamer=ChatStreamer(tokenizer=tokenizer), |
|
history=history, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=do_sample, |
|
temperature=temperature, |
|
top_p=top_p, |
|
**kwargs, |
|
) |
|
|
|
def consumer(): |
|
producer = threading.Thread(target=stream_producer) |
|
producer.start() |
|
while True: |
|
res = response_queue.get() |
|
if res is None: |
|
return |
|
yield res |
|
|
|
return consumer() |
|
|
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The InternLM2 Model transformer with a sequence classification head on top (linear layer). |
|
|
|
[`InternLM2ForSequenceClassification`] uses the last token in order to do the classification, |
|
as other causal models (e.g. GPT-2) do. |
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a |
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If |
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the |
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in |
|
each row of the batch). |
|
""", |
|
InternLM2_START_DOCSTRING, |
|
) |
|
class InternLM2ForSequenceClassification(InternLM2PreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.model = InternLM2Model(config) |
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.tok_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.tok_embeddings = value |
|
|
|
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size = input_ids.shape[0] |
|
else: |
|
batch_size = inputs_embeds.shape[0] |
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.') |
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to( |
|
logits.device |
|
) |
|
else: |
|
sequence_lengths = -1 |
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = 'regression' |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = 'single_label_classification' |
|
else: |
|
self.config.problem_type = 'multi_label_classification' |
|
|
|
if self.config.problem_type == 'regression': |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == 'single_label_classification': |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == 'multi_label_classification': |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
if not return_dict: |
|
output = (pooled_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|