Transformers
Safetensors
English
V2PE
Inference Endpoints
V2PE / V2PE-32K /configuration_internvl_chat.py
Weiyun1025's picture
Upload folder using huggingface_hub
44523f1 verified
raw
history blame
5.55 kB
# --------------------------------------------------------
# InternVL
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import copy
from internvl.model.internlm2.configuration_internlm2 import InternLM2Config
from internvl.model.phi3.configuration_phi3 import Phi3Config
from transformers import AutoConfig, LlamaConfig, Qwen2Config
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from .configuration_intern_vit import InternVisionConfig
logger = logging.get_logger(__name__)
class InternVLChatConfig(PretrainedConfig):
model_type = 'internvl_chat'
is_composition = True
def __init__(
self,
vision_config=None,
llm_config=None,
use_backbone_lora=0,
use_llm_lora=0,
pad2square=False,
select_layer=-1,
force_image_size=None,
downsample_ratio=0.5,
template=None,
dynamic_image_size=False,
use_thumbnail=False,
ps_version='v1',
min_dynamic_patch=1,
max_dynamic_patch=6,
min_num_frame=4,
max_num_frame=20,
compress_seq=False,
attn_type=None,
posid_type=None,
group_list=None,
chunk_num=1,
interaction=True,
rope_pos_id_version='default',
rope_pos_id_stride=None,
img_emb_down_sample_ratio=None,
**kwargs):
super().__init__(**kwargs)
if vision_config is None:
vision_config = {}
logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
if llm_config is None:
llm_config = {}
logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
self.vision_config = InternVisionConfig(**vision_config)
if llm_config['architectures'][0] == 'LlamaForCausalLM':
self.llm_config = LlamaConfig(**llm_config)
elif llm_config['architectures'][0] == 'InternLM2ForCausalLM':
self.llm_config = InternLM2Config(**llm_config)
elif llm_config['architectures'][0] == 'Phi3ForCausalLM':
self.llm_config = Phi3Config(**llm_config)
elif llm_config['architectures'][0] == 'Qwen2ForCausalLM':
self.llm_config = Qwen2Config(**llm_config)
else:
raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
self.use_backbone_lora = use_backbone_lora
self.use_llm_lora = use_llm_lora
self.pad2square = pad2square
self.select_layer = select_layer
self.force_image_size = force_image_size
self.downsample_ratio = downsample_ratio
self.template = template
self.dynamic_image_size = dynamic_image_size
self.use_thumbnail = use_thumbnail
self.ps_version = ps_version # pixel shuffle version
self.min_dynamic_patch = min_dynamic_patch
self.max_dynamic_patch = max_dynamic_patch
self.min_num_frame = min_num_frame
self.max_num_frame = max_num_frame
self.compress_seq = compress_seq
self.attn_type=attn_type
self.posid_type = posid_type
self.group_list = group_list
self.chunk_num = chunk_num
self.interaction = interaction
self.rope_pos_id_version = rope_pos_id_version
self.rope_pos_id_stride = rope_pos_id_stride
self.img_emb_down_sample_ratio = img_emb_down_sample_ratio
logger.info(f'vision_select_layer: {self.select_layer}')
logger.info(f'ps_version: {self.ps_version}')
logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
logger.info(f'img_emb_down_sample_ratio: {self.img_emb_down_sample_ratio}')
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output['vision_config'] = self.vision_config.to_dict()
output['llm_config'] = self.llm_config.to_dict()
output['model_type'] = self.__class__.model_type
output['use_backbone_lora'] = self.use_backbone_lora
output['use_llm_lora'] = self.use_llm_lora
output['pad2square'] = self.pad2square
output['select_layer'] = self.select_layer
output['force_image_size'] = self.force_image_size
output['downsample_ratio'] = self.downsample_ratio
output['template'] = self.template
output['dynamic_image_size'] = self.dynamic_image_size
output['use_thumbnail'] = self.use_thumbnail
output['ps_version'] = self.ps_version
output['min_dynamic_patch'] = self.min_dynamic_patch
output['max_dynamic_patch'] = self.max_dynamic_patch
output['rope_pos_id_version'] = self.rope_pos_id_version
output['rope_pos_id_stride'] = self.rope_pos_id_stride
output['img_emb_down_sample_ratio'] = self.img_emb_down_sample_ratio
output['min_num_frame'] = self.min_num_frame
output['max_num_frame'] = self.max_num_frame
return output